×

Discrete Toda field equations. (English) Zbl 1020.37536


MSC:

37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
39A12 Discrete version of topics in analysis
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Toda, M., Theory of nonlinear lattices, (1988), Springer Berlin
[2] Mikhailov, A.V.; Olshanetsky, M.A.; Perelomov, A.M., Commun. math. phys., 79, 473, (1981)
[3] Wilson, G., Ergod. th. dynam. syst., 1, 361, (1981)
[4] Fordy, A.P.; Gibbons, J., (), 33
[5] Olive, D.; Turok, N., Nucl. phys B, 215, 470, (1983)
[6] Ablowitz, M.J.; Ladik, F.J.; Ablowitz, M.J.; Ladik, F.J., Stud. appl. math., Stud. appl. math., 57, 1, (1977)
[7] Hirota, R., J. phys. soc. Japan, 43, 1424, (1977)
[8] Hirota, R., J. phys. soc. Japan, 43, 2074, (1977)
[9] Hirota, R., J. phys. soc. Japan, 43, 2079, (1977)
[10] Hirota, R., J. phys. soc. Japan, 45, 321, (1978)
[11] Hirota, R., J. phys. soc. Japan, 46, 312, (1979)
[12] Hirota, R., J. phys. soc. Japan, 50, 3785, (1981)
[13] Levi, D.; Pilloni, L.; Santini, P.M., J. phys. A, 14, 1567, (1981)
[14] Nijhoff, F.W.; Quispel, G.R.W.; Capel, H.W., Phys. lett. A, 97, 125, (1983)
[15] Nijhoff, F.W.; Capel, H.W.; Wiersma, G.L.; Quispel, G.R.W.; Nijhoff, F.W.; Capel, H.W.; Wiersma, G.L.; Quispel, G.R.W., Phys. lett. A, Phys. lett. A, 105, 267, (1984)
[16] Quispel, G.R.W.; Nijhoff, F.W.; Capel, H.W.; van der Linden, J., Physica A, 125, 344, (1984)
[17] Nijhoff, F.W.; Papageorgiou, V.G.; Capel, H.W., (), 312
[18] Suris, Yu.B., Leningrad math. J., 2, 339, (1990)
[19] Suris, Yu.B., Phys. lett. A, 145, 113, (1990)
[20] Suris, Yu.B., Phys. lett. A, 156, 467, (1991)
[21] Gibbons, J.; Kupershmidt, B.A., Phys. lett. A, 165, 105, (1992)
[22] Saito, S.; Saitoh, N., J. math. phys., 28, 1052, (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.