×

zbMATH — the first resource for mathematics

Rotating periodic orbits of the parametrically excited pendulum. (English) Zbl 1020.70507

MSC:
70K40 Forced motions for nonlinear problems in mechanics
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
70K50 Bifurcations and instability for nonlinear problems in mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bryant, P.J.; Miles, J.W., J. aust. math. soc. ser. B, 32, 42, (1990)
[2] Bishop, S.R.; Clifford, M.J., Eur. J. mech. A, 12, 581, (1994)
[3] M.J. Clifford and S.R. Bishop, Locating oscillatory orbits of the parametrically excited pendulum, to appear in: J. Aust. Math. Soc. Ser. B. · Zbl 0859.70017
[4] Thompson, J.M.T., (), 195
[5] Clifford, M.J.; Bishop, S.R., Phys. lett. A, 184, 57, (1993) · Zbl 0941.70514
[6] Stephenson, A., (), 1
[7] Acheson, D.J.; Mullin, T., Nature, 366, 215, (1993)
[8] Acheson, D.J., (), 239
[9] Koch, B.P.; Leven, R.W., Physica D, 16, 1, (1985)
[10] Leven, R.W.; Pompe, B.; Wilke, C.; Koch, B.P., Physica D, 16, 371, (1985)
[11] Leven, R.W.; Selent, M.; Uhrlandt, D., Chaos solitons fractals, 4, 661, (1994)
[12] Leven, R.W.; Selent, M., Chaos solitons fractals, 4, 2217, (1994)
[13] McRobie, F.A.; Thompson, J.M.T., Int. J. bifurc. chaos, 3, 1343, (1993)
[14] Birman, J.S., Braids, links, and linking class groups, Ann. math. study, 82, (1974)
[15] Hsu, C.S., Cell to cell mapping: a method of global analysis for nonlinear systems, (1989), Springer Berlin
[16] Foale, S.; Thompson, J.M.T., Comput. meth. appl. mech. eng., 89, 381, (1991)
[17] Clifford, M.J., The parametrically excited pendulum: a paradigm of nonlinear systems, Thesis, (1994)
[18] Eckmann, J.P.; Ruelle, D., Rev. mod. phys., 57, 617, (1985)
[19] Tufillaro, N.B.; Abbott, T.; Reilly, J., An experimental approach to nonlinear dynamics and chaos, (1992), Addison Wesley New York · Zbl 0762.58001
[20] Tufillaro, N.B.; Holzner, R.; Flepp, L.; Brun, E.; Finardi, M.; Badii, R., Phys. rev. A, 44, 4786, (1991)
[21] Fioretti, A.; Molesti, F.; Zambon, B.; Arimondo, E.; Papoff, F., Int. J. bifurc. chaos, 3, 559, (1993)
[22] Lefranc, M.; Glorieux, P., Int. J. bifurc. chaos, 3, 643, (1993)
[23] Shinbrot, T.; Grebogi, C.; Ott, E.; Yorke, J.A., Nature, 363, 411, (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.