×

Statistical-mechanical foundation of the ubiquity of Lévy distributions in nature. (English) Zbl 1020.82593


MSC:

82C03 Foundations of time-dependent statistical mechanics

Software:

Mathematica
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. F. Shlesinger, Physica (Amsterdam) 109A pp 597– (1981)
[2] E. W. Montroll, J. Stat. Phys. 32 pp 209– (1983)
[3] E. W. Montroll, in: Nonequilibrium Phenomena II: from Stochastic to Hydrodynamics (1984)
[4] B. B. Mandelbrot, in: The Fractal Geometry of Nature (1982) · Zbl 0504.28001
[5] A. Ott, Phys. Rev. Lett. 65 pp 2201– (1990)
[6] J. P. Bouchaud, J. Phys. II (France) 1 pp 1465– (1991)
[7] T. H. Solomon, Phys. Rev. Lett. 71 pp 3975– (1993)
[8] F. Bardou, Phys. Rev. Lett. 72 pp 203– (1994)
[9] C.-K. Peng, Phys. Rev. Lett. 70 pp 1343– (1993)
[10] G. M. Zaslavsky, Phys. Rev. E 48 pp 1683– (1993)
[11] G. M. Zaslavsky, Physica (Amsterdam) 76D pp 110– (1994)
[12] G. M. Zaslavsky, Chaos 4 pp 25– (1994) · Zbl 1055.82525
[13] J. Klafter, Phys. Rev. E 49 pp 4873– (1994)
[14] A. Einstein, Ann. Phys. (N.Y.) 17 pp 549– (1905) · JFM 36.0975.01
[15] A. Einstein, Ann. Phys. (N.Y.) 33 pp 1275– (1910) · JFM 41.0927.02
[16] A. Einstein, in: Investigations on the Theory of Brownian Movement (1926)
[17] H. B. Callen, in: Thermodynamics (1960)
[18] P. A. Alemany, Phys. Rev. E 49 pp 956– (1994)
[19] P. A. Alemany, Phys. Rev. Lett. 75 pp 366– (1995)
[20] C. Tsallis, J. Stat. Phys. 52 pp 479– (1988) · Zbl 1082.82501
[21] E. M. F. Curado, J. Phys. A 24 pp L69–
[22] C. Tsallis, Phys. Lett. A
[23] A. R. Plastino, Phys. Lett. A 174 pp 384– (1993)
[24] J. J. Aly, in: N-Body Problems and Gravitational Dynamics: Proceedings of a meeting held at Ausois, Haute Maurienne, France, Paris, 1993 (1993)
[25] A.R. Plastino, Phys. Lett. A 193 pp 251– (1994) · Zbl 0959.82512
[26] F.D. Nobre, Physica (Amsterdam) 213A pp 337– (1995)
[27] P. Jund, Phys. Rev. B 52 pp 50– (1995)
[28] L. S. Lucena, Phys. Rev. E 51 pp 5247– (1995)
[29] A. K. Rajagopal, Physica (Amsterdam) 212B pp 309– (1995)
[30] C. Tsallis, Fractals
[31] C. Tsallis, Phys. Lett. A 195 pp 329– (1995) · Zbl 0941.81565
[32] C. Tsallis, Phys. Rev. E 52 pp 1447– (1995)
[33] A. R. Plastino, Physica (Amsterdam)
[34] D. A. Stariolo, in: Annual Reviews of Computational Physics (1995)
[35] T.J.P. Penna, Phys. Rev. E 51 pp R1– (1995)
[36] T.J.P. Penna, Comput. Phys. 9 pp 341– (1995)
[37] C. Tsallis, Chaos, Solitons Fractals 6 pp 539– (1995) · Zbl 0900.82056
[38] A. Chame, J. Phys. A 27 pp 3663– (1994)
[39] M. O. Caceres, Physica (Amsterdam) 218A pp 471– (1995)
[40] A. R. Plastino, Phys. Lett. A 177 pp 177– (1993)
[41] S. Wolfram, in: Mathematica: A System for Doing Mathematics by Computer (1992) · Zbl 0925.65002
[42] A. Araújo, in: The Central Limit Theorem for Real and Banach Valued Random Variables (1980)
[43] G. Christoph, in: Convergence Theorems with a Stable Limit Law (1992) · Zbl 0773.60012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.