Davitt, R. M.; Powers, R. C.; Riedel, T.; Sahoo, P. K. Flett’s mean value theorem for holomorphic functions. (English) Zbl 1021.30003 Math. Mag. 72, No. 4, 304-307 (1999). In 1958, T.M. Flett proved the following mean value theorem: if \(f:[a,b]\rightarrow \mathbb{R}\) is differentiable and \(f'(a)=f'(b)\) then there exists \(\eta\in(a,b)\) such that \(f(\eta)-f(a)=(\eta-a)f'(\eta).\) Its complex version is not valid as the function \(f(z)=e^z-z\) shows. In this paper the authors give a generalization of Flett’s mean value theorem for holomorphic functions. Reviewer: Nikola Tuneski (Skopje) Cited in 6 Documents MSC: 30A99 General properties of functions of one complex variable 26A24 Differentiation (real functions of one variable): general theory, generalized derivatives, mean value theorems Keywords:Flett’s mean value theorem; generalization; holomorphic function PDF BibTeX XML Cite \textit{R. M. Davitt} et al., Math. Mag. 72, No. 4, 304--307 (1999; Zbl 1021.30003) Full Text: DOI