## The Fekete-Szegö problem for a subclass of close-to-convex functions.(English)Zbl 1021.30014

Summary: Let $${\mathcal C}_1(\beta)$$ be the class of normalized functions $$f$$, which are analytic in the open unit disk $${\mathcal U}$$, given by the power series: $$f(z)= z+ \sum_{n=2}^\infty a_nz^n$$, and satisfy the inequality: $\text{Re}\Biggl\{ \frac{zf'(z)} {\varphi(z)} e^{i\beta} \Biggr\}> 0 \qquad \biggl( z\in{\mathcal U};\;-\frac\pi 2< \beta< \frac\pi 2\biggr),$ for some normalized univalent and convex function $$\varphi$$. In this paper we solve the Fekete-Szegő problem for the family: ${\mathcal C}_1:= \cup_\beta{\mathcal C}_1(\beta) \qquad \biggl( -\frac\pi 2< \beta< \frac\pi 2 \biggr)$ by proving that $\max_{f\in{\mathcal C}_1}|a_3- \lambda a_2^2|= \begin{cases} \frac 53- \frac{9\lambda}4 &(0\leq \lambda\leq \frac 29),\\ \frac 23+ \frac 1{9\lambda} &(\frac 29 \leq \lambda\leq \frac 23),\\ \frac 56 &(\frac 23\leq \lambda\leq 1). \end{cases}$ {}.

### MSC:

 30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
Full Text: