×

zbMATH — the first resource for mathematics

On the mixed finite element method with Lagrange multipliers. (English) Zbl 1021.65056
The authors extend the analysis of the standard finite element method with Lagrange multipliers to the case of dual-mixed variational formulations. As a model they consider the Poisson problem with mixed boundary conditions in a polygonal domain. Numerical results are provided for illustrating the performance of the algorithm.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Achchab, Math Modelling Numer Anal 33 pp 459– (1999)
[2] Agouzal, Jpn J Indust Appl Math 13 pp 257– (1996)
[3] Arbogast, SIAM J Numer Anal 37 pp 1295– (2000)
[4] Arbogast, Comput Meth Appl Mech Eng 149 pp 255– (1997)
[5] Babu?ka, Numer Math 20 pp 179– (1973)
[6] and Survey lectures on the mathematical foundations of the finite element method, editor, The mathematical foundations of the finite element method with applications to partial differential equations, Academic Press, New York, 1972.
[7] Barbosa, Comput Meth Appl Mech Eng 85 pp 109– (1991)
[8] Barbosa, Numer Math 62 pp 1– (1992)
[9] Boffi, Numer Math 75 pp 405– (1997)
[10] Boffi, Unione Matematica Italiana. Bollettino A VII pp 41– (1997)
[11] Bramble, RAIRO Mod?lisation Math?matique et Analyse Num?rique 19 pp 519– (1985)
[12] and Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[13] Elliptic Problems in Non-Smooth Domains, Monographs and Studies in Mathematics, 24, Pitman, London, 1985.
[14] Grisvard, EDF Bulletin de la Direction des Etudes et Recherches (Serie C) 1 pp 21– (1986)
[15] Hiptmair, Computing 57 pp 25– (1996)
[16] Linear Partial Differential Operators, Springer-Verlag, Berlin, Heidelberg, New York, 1963. · Zbl 0108.09301
[17] A Lagrange-multiplier finite element method for the stationary Stokes problems, Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, Science Press, Beijing, 1985, 230-236.
[18] and Non-Homogeneous Boundary Value Problems and Applications, vol. I, Springer-Verlag, Berlin, Heidelberg, New York, 1972.
[19] Pitk?ranta, Numer Mathe 33 pp 273– (1979)
[20] Pitk?ranta, Math Comput 35 pp 1113– (1980)
[21] Pitk?ranta, RAIRO Mod?lisation Math?matique et Analyse Num?rique 14 pp 309– (1980)
[22] Pitk?ranta, Math Comput 37 pp 13– (1981)
[23] and Mixed and hybrid methods, and editors, Handbook of numerical analysis, vol. II, Finite element methods (Part 1), North-Holland, Amsterdam, 1991.
[24] Mixed finite element methods for flow in porous media, Ph.D. Thesis, Rice University, 1996.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.