×

Empirical evaluation of dissimilarity measures for color and texture. (English) Zbl 1021.68787

Summary: This paper empirically compares nine families of image dissimilarity measures that are based on distributions of color and texture features summarizing over 1000 CPU hours of computational experiments. Ground truth is collected via a novel random sampling scheme for color, and by an image partitioning method for texture. Quantitative performance evaluations are given for classification, image retrieval, and segmentation tasks, and for a wide variety of dissimilarity measure parameters. It is demonstrated how the selection of a measure, based on large scale evaluation, substantially improves the quality of classification, retrieval, and unsupervised segmentation of color and texture images.

MSC:

68U99 Computing methodologies and applications
68T45 Machine vision and scene understanding
68U10 Computing methodologies for image processing

Software:

QBIC
PDF BibTeX XML Cite
Full Text: DOI