×

Wave localization as a manifestation of ray chaos in underwater acoustics. (English) Zbl 1021.86002

Summary: Wave chaos is demonstrated by studying a wave propagation in a periodically corrugated waveguide. In the limit of a short wave approximation (SWA) the underlying description is related to the chaotic ray dynamics. In this case the control parameter of the problem is characterized by the corrugation amplitude and the SWA parameter. The considered model is fairly suitable and tractable for the analytical analysis of a wave localization length. The number of eigenmodes characterized the width of the localized wave packet is estimated analytically.

MSC:

86A05 Hydrology, hydrography, oceanography

Software:

OASES
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Tappert, F.D., (), 224
[2] Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H., Computational Ocean acoustics, (1994), AIP Woodbury, NY
[3] Virovlyansky, A.L.; Zaslavsky, G.M., Chaos, 10, 211, (2000) · Zbl 0983.76085
[4] Munk, W.; Wunsch, C., Deep-sea res., 26, 123, (1979)
[5] The ATOC Consortium, Science 1988;1326
[6] Brown, M.G.; Tappert, F.D.; Goni, G., Wave motion, 14, 93, (1991)
[7] Palmer, D.R.; Brown, M.G.; Tappert, F.D.; Bezdek, M.F., Geophys. res. lett., 15, 569, (1988)
[8] Smith, K.B.; Brown, M.G.; Tappert, F.D., J. acoust. soc. am., 91, 1939, (1992), 1950
[9] Simmen, J.; Flatte, S.M.; Wang, G.-Y., J. acoust. soc. am., 102, 239, (1997)
[10] Abdullaev, S.S.; Zaslavsky, G.M., Sov. phys. usp., 34, 645, (1991)
[11] Sundaram, B.; Zaslavsky, G.M., Chaos, 9, 483, (1999) · Zbl 0983.76084
[12] Smirnov, I.P.; Virovlyansky, A.L.; Zaslavsky, G.M., Phys. rev. E, 64, 036221, (2001)
[13] Gutzwiller, M.C., Chaos in classical and quantum mechanics, (1990), Springer-Verlag New York · Zbl 0727.70029
[14] Zaslavsky, G.M., Phys. rep., 80, 157, (1981)
[15] Zaslavsky, G.M.; Abdullaev, S.S., Chaos, 7, 182, (1997)
[16] Berman, G.P.; Zaslavsky, G.M., Physica A, 91, 450, (1978)
[17] Berman, G.P.; Zaslavsky, G.M., Physica A, 111, 17, (1982)
[18] Lichtenberg, A.J.; Liberman, M.A., Physica D, 1, 291, (1980)
[19] Lichtenberg, A.J.; Liberman, M.A., Regular and stochastic motion, (1983), Springer-Verlag New York · Zbl 0506.70016
[20] ()
[21] Munier, A.; Burgan, J.R.; Feix, M.; Fijalkov, E.; Jose, J.V.; Gordery, R., J. math. phys., Phys. rev. lett., 56, 290, (1986)
[22] Scheininger, C.; Kleber, M., Physica D, 50, 391, (1990)
[23] Iomin, A.; Fishman, S.; Zaslavsky, G.M., Phys. rev. E, 67, 046210, (2003)
[24] Graham, R., Europhys. lett., 7, 671, (1988)
[25] Jahnke, E.; Emde, F.; Lösh, F., Tables of a higher functions, (1960), McGrow-Hill New York
[26] Rayleigh, L., Proc. ray. soc. A, 79, 399, (1907)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.