An alternating iterative algorithm for the Cauchy problem associated to the Helmholtz equation. (English) Zbl 1022.78012

Summary: The iterative algorithm proposed by A. V. Kozlov, V. G. Maz’ya and A. V. Fomin [Comput. Math. Math. Phys. 31, 45-52 (1991; Zbl 0774.65069)] for obtaining approximate solutions to the ill-posed Cauchy problem for the Helmholtz equation is analysed. The technique is then numerically implemented using the boundary element method (BEM). The numerical results confirm that the iterative BEM produces a convergent and stable numerical solution with respect to increasing the number of boundary elements and decreasing the amount of noise added into the input data. An efficient stopping regularising criterion is also proposed.


78M15 Boundary element methods applied to problems in optics and electromagnetic theory
65M30 Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs
35R25 Ill-posed problems for PDEs


Zbl 0774.65069
Full Text: DOI


[1] Beskos, D.E., Boundary element method in dynamic analysis: part II (1986-1996), ASME appl. mech. rev., 50, 149-197, (1997)
[2] Chen, J.T.; Wong, F.C., Dual formulation of multiple reciprocity method for the acoustic mode of a cavity with a thin partition, J. sound vibration, 217, 75-95, (1998)
[3] Harari, I.; Barbone, P.E.; Slavutin, M.; Shalom, R., Boundary infinite elements for the Helmholtz equation in exterior domains, Int. J. numer. meth. engrg., 41, 1105-1131, (1998) · Zbl 0911.76035
[4] Hall, W.S.; Mao, X.Q., A boundary element investigation of irregular frequencies in electromagnetic scattering, Engrg. anal. boundary elem., 16, 245-252, (1995)
[5] Kern, D.Q.; Kraus, A.D., Extended surface heat transfer, (1972), McGraw-Hill New York
[6] Manzoor, M.; Ingham, D.B.; Heggs, P.J., The one-dimensional analysis of fin assembly heat transfer, ASME J. heat transfer, 105, 646-651, (1983) · Zbl 0512.65085
[7] Wood, A.S.; Tupholme, G.E.; Bhatti, M.I.H.; Heggs, P.J., Steady-state heat transfer through extended plane surfaces, Int. comm. heat mass transfer, 22, 99-109, (1995)
[8] Niwa, Y.; Kobayashi, S.; Kitahara, M., Determination of eigenvalue by boundary element method, (), Chapter 7 · Zbl 0493.73081
[9] De Mey, G., A simplified integral equation method for the calculation of the eigenvalues of Helmholtz equation, Int. J. numer. meth. engrg., 11, 1340-1342, (1977) · Zbl 0364.65079
[10] Hutchinson, J.R., An alternative BEM formulation applied to membrane vibrations, (), 613-625
[11] Nowak, A.J.; Brebbia, C.A., Solving Helmholtz equation by boundary elements using multiple reciprocity method, (), 265-270
[12] Kamiya, N.; Andoh, E., Eigenvalue analysis by boundary element method, J. sound vibration, 160, 279-287, (1993) · Zbl 0925.65178
[13] Kamiya, N.; Andoh, E.; Nogae, K., Eigenvalue analysis by boundary element method: new developments, Engrg. anal. boundary elem., 16, 203-207, (1993)
[14] Nardini, C.F.; Brebbia, C.A., A new approach to free vibration analysis using boundary elements, (), 719-730
[15] Agnantiaris, J.P.; Polyzer, D.; Beskos, D., Three-dimensional structural vibration analysis by the dual reciprocity BEM, Comput. mech., 21, 372-381, (1998) · Zbl 0922.73074
[16] Golberg, M.A.; Chen, C.S.; Bowman, H.; Power, H., Some comments on the use of radial basis functions in the dual reciprocity method, Comput. mech., 22, 61-69, (1998) · Zbl 0915.73071
[17] Chen, G.; Zhou, J., Boundary element methods, (1992), Academic Press London
[18] Bai, M.R., Application of BEM-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries, J. acoust. soc. am., 92, 533-549, (1992)
[19] Kim, B.K.; Ih, J.G., On the reconstruction of the vibro-acoustic field over the surface enclosing an interior space using the boundary element method, J. acoust. soc. am., 100, 3003-3016, (1996)
[20] Wang, Z.; Wu, S.R., Helmholtz equation-least-squares method for reconstructing the acoustic pressure field, J. acoust. soc. am., 102, 2020-2032, (1997)
[21] Wu, S.R.; Yu, J., Application of BEM-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries, J. acoust. soc. am., 104, 2054-2060, (1998)
[22] DeLillo, T.; Isakov, V.; Valdivia, N.; Wang, L., The detection of the source of acoustical noise in two dimensions, SIAM J. appl. math., 61, 2104-2121, (2001) · Zbl 0983.35149
[23] Kozlov, V.A.; Maz’ya, V.G.; Fomin, A.F., An iterative method for solving the Cauchy problem for elliptic equations, Comput. maths. math. phys., 31, 45-52, (1991) · Zbl 0774.65069
[24] Lions, J.L.; Magenes, E., Non-homogeneous boundary value problems and their applications, (1972), Springer Verlag Berlin · Zbl 0223.35039
[25] Fichera, G., Sul problema Della derivata obliqua e sul problema misto per l’equazione di Laplace, Boll. un. mat. ital., 7, 367-377, (1952) · Zbl 0047.34303
[26] Schiavone, P., Mixed problem in the theory of elastic plates with transverse shear deformation, Q. jl. mech. appl. math., 50, 239-249, (1997) · Zbl 0905.73031
[27] Wendland, W.L.; Stephan, E.; Hsiao, G.C., On the integral equation method for the plane mixed boundary value problem for the Laplacian, Math. meth. appl. sci., 1, 265-321, (1979) · Zbl 0461.65082
[28] T. Johansson, private communication
[29] Morozov, V.A., On the solution of functional equations by the method of regularization, Soviet math. dokl., 167, 414-417, (1966) · Zbl 0187.12203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.