×

A finite difference analysis of Biot’s consolidation model. (English) Zbl 1023.76032

Summary: We give stability estimates and convergence analysis of finite difference methods for Biot’s consolidation model. Initially central differences for space discretization and a weighed two-level time scheme are examined. To improve stability and convergence limitations for this scheme, we also consider space discretizations on MAC type grids (staggered grids). Numerical results illustrate the obtained theoretical results.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bear, J.; Bachmat, Y., Introduction to modelling phenomena of transport in porous media, (1991), Kluwer Academic Dordrecht · Zbl 0780.76002
[2] Biot, M., General theory of three dimensional consolidation, J. appl. phys., 12, 155-169, (1941) · JFM 67.0837.01
[3] Biot, M., Theory of elasticity and consolidation for a porous anisotropic solid, J. appl. phys., 33, 182-185, (1955) · Zbl 0067.23603
[4] Biot, M., General solutions of the equation of elasticity and consolidation for a porous material, J. appl. mech., 78, 91-96, (1956) · Zbl 0074.19101
[5] Harlow, F.H.; Welch, J.E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. fluids, 8, (1965) · Zbl 1180.76043
[6] Murad, M.A.; Loula, A.F.D., Improved accuracy in finite element analysis of Biot’s consolidation problem, Comput. methods appl. mech. engrg., 95, 359-382, (1992) · Zbl 0760.73068
[7] Murad, M.A.; Loula, A.F.D., On stability and convergence of finite element approximations of Biot’s consolidation problem, Internat. J. numer. methods engrg., 37, 645-667, (1994) · Zbl 0791.76047
[8] Murad, M.A.; Thomée, V.; Loula, A.F.D., Asymptotic behaviour of semidiscrete finite-element approximations of Biot’s consolidation problem, SIAM J. numer. anal., 33, 1065-1083, (1996) · Zbl 0854.76053
[9] Roos, H.G.; Stynes, M.; Tobiska, L., Numerical methods for singularly perturbed differential equations, (1996), Springer Berlin
[10] Samarskii, A.A., The theory of the difference schemes, (2001), Marcel Dekker New York · Zbl 0971.65076
[11] Samarskii, A.A.; Vabishchevich, P.N.; Lisbona, F.J., Difference schemes for filtration consolidation problems, Dokl. math., 63, 1, (2001), translated from Dokl. Akad. Nauk 376 (1) 2001 · Zbl 1090.65541
[12] Samarskii, A.A.; Vabishchevich, P.N., Computational heat transfer, vols. 1 and 2, (1995), Wiley Chichester
[13] Showalter, R.E., Diffusion in poro-elastic media, J. math. anal. appl., 251, 310-340, (2000) · Zbl 0979.74018
[14] Yokoo, Y.; Yamagata, K.; Nagaoka, H., Finite element method applied to Biot’s consolidation theory, Soil found., 11, 29-46, (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.