×

zbMATH — the first resource for mathematics

Stationary black holes: Uniqueness and beyond. (English) Zbl 1023.83006
Summary: The spectrum of known black hole solutions to the stationary Einstein equations has increased in an unexpected way during the last decade. In particular, it has turned out that not all black hole equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black hole space-times ceases to exist in self-gravitating nonlinear field theories. This text aims to review some of the recent developments and to discuss them in the light of the uniqueness theorem for the Einstein-Maxwell system.

MSC:
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C57 Black holes
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
PDF BibTeX Cite
Full Text: DOI Link EuDML
References:
[1] Aichelburg, PC; Bizon, P., “Magnetically Charged Black Holes and their Stability”, Phys. Rev. D, 48, 607-615, (1993)
[2] Baade, W.; Zwicky, F., “On Supernovae; Cosmic Rays from Super-novae”, Proc. Nat. Acad. Sen., 20, 254-263, (1934)
[3] Bardeen, JM; Carter, B.; Hawking, SW, “The Four Laws of Black Hole Mechanics”, Commun. Math. Phys., 31, 161-170, (1973) · Zbl 1125.83309
[4] Bartnik, R.; McKinnon, J., “Particle-Like Solutions of the Einstein-Yang-Mills Equations”, Phys. Rev. Lett., 61, 141-144, (1988)
[5] Behnke, H., and Sommer, F., Theor e der Analyt schen Funkt onen e ner Komplexen Veränderlichen, (Springer-Verlag, Berlin, 1976). 64
[6] Beig, R.; Chruściel, PT, “The Isometry Groups of Asymptotically Flat, Asymptotically Empty Space-Times with Time-like ADM Four Momentum”, Commun. Math. Phys., 188, 585-597, (1997) · Zbl 0890.53063
[7] Bekenstein, JD, “Exact Solutions of Einstein-Conformal Scalar Equations”, Ann. Phys. (NY), 82, 535-547, (1974)
[8] Bekenstein, JD, “Black Holes with Scalar Charge”, Ann. Phys. (NY), 91, 75-82, (1975)
[9] Bizon, P., “Colored Black Holes”, Phys. Rev. Lett., 64, 2844-2847, (1990) · Zbl 1050.83506
[10] Boothby, W.M., An Introduction to Differentiable Manifolds and Rieman-nian Geometry, (Academic Press, New York, 1975). 42, 47
[11] Boschung, P.; Brodbeck, O.; Moser, F.; Straumann, N.; Volkov, MS, “Instability of Gravitating Sphalerons”, Phys. Rev. D, 50, 3842-3846, (1994)
[12] Breitenlohner, P.; Forgács, P.; Maison, D., “Gravitating Monopole Solutions”, Nucl. Phys. B, 383, 357-376, (1992) · Zbl 0990.81574
[13] Breitenlohner, P.; Forgács, P.; Maison, D., “On Static Spherically Symmetric Solutions of the Einstein-Yang-Mills Equations”, Commun. Math. Phys., 163, 141-172, (1994) · Zbl 0809.53081
[14] Breitenlohner, P.; Forgács, P.; Maison, D., “Gravitating Monopole Solutions II”, Nucl. Phys. B, 442, 126-156, (1995) · Zbl 0990.81574
[15] Breitenlohner, P.; Maison, D.; Gibbons, GW, “Four-Dimensional Black Holes from Kaluza-Klein Theories”, Commun. Math. Phys., 120, 295-334, (1988) · Zbl 0661.53064
[16] Brill, DR, “Electromagnetic Fields in Homogeneous, Non-static Universe”, Phys. Rev. B, 133, 845-848, (1964)
[17] Brodbeck, O., Gravitierende Eichsolitonen und Schwarze Löcher mit Yang-Mills-Haar für beliebige Eichgruppen, PhD Thesis, (University of Zurich, Switzerland, 1995). 19, 4.4
[18] Brodbeck, O., “On Symmetric Gauge Fields for Arbitrary Gauge and Symmetry Groups”, Helv. Phys. Acta, 69, 321-324, (1996) · Zbl 0865.55012
[19] Brodbeck, O., and Heusler, M., “Stationary Perturbations and Infinitesimal Rotations of Static Einstein-Yang-Mills Configurations with Bosonic Matter”, (June, 1997), [Online Los Alamos Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/abs/gr-qc/9706064. To be published in Phys. Rev. D. 4, 27, 29, 4, 44
[20] Brodbeck, O.; Heusler, M.; Lavrelashvili, G.; Straumann, N.; Volkov, MS, “Stability Analysis of New Solutions of the EYM System with Cosmological Constant”, Phys. Rev. D, 54, 7338-7352, (1996)
[21] Brodbeck, O.; Heusler, M.; Straumann, N., “Pulsation of Spherically Symmetric Systems in General Relativity”, Phys. Rev. D, 53, 754-761, (1996)
[22] Brodbeck, O., Heusler, M., Straumann, N., and Volkov, M.S., “Rotating Solitons and Nonrotating, Non-static Black Holes”, (July, 1997), [Online Los Alamos Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/abs/gr-qc/9707057. To be published in Phys. Rev. Lett. 4,21, 27, 44
[23] Brodbeck, O.; Straumann, N., “A Generalized Birkhoff Theorem for the Einstein-Yang-Mills System”, J. Math. Phys., 34, 2423-2424, (1993) · Zbl 0787.53069
[24] Brodbeck, O.; Straumann, N., “Instability of Einstein-Yang-Mills Solitons for Arbitrary Gauge Groups”, Phys. Lett. B, 324, 309-314, (1994) · Zbl 0865.58051
[25] Bunting, G.L., Proof of the Uniqueness Conjecture for Black Holes, PhD Thesis, (University of New England, Armidale, N.S.W., 1983). 11, 68
[26] Bunting, GL; Masood-ul Alam, AKM, “Nonexistence of Multiple Black Holes in Asymptotically Euclidean Static Vacuum Space-Times”, Gen. Rel. Grav., 19, 147-154, (1987) · Zbl 0615.53055
[27] Carter, B., “Killing Horizons and Orthogonally Transitive Groups in Space-Time”, J. Math. Phys., 10, 70-81, (1969) · Zbl 0165.58902
[28] Carter, B., “The Commutation Property of a Stationary, Axisymmetric System”, Commun. Math. Phys., 17, 233-238, (1970) · Zbl 0194.58701
[29] Carter, B., “Axisymmetric Black Hole has only Two Degrees of Freedom”, Phys. Rev. Lett., 26, 331-332, (1971)
[30] Carter, B.; DeWitt, C. (ed.); DeWitt, BS (ed.), “Black Hole Equilibrium States”, 57-214, (1973), New York
[31] Carter, B.; Hawking, SW (ed.); Israel, W. (ed.), “The General Theory of the Mechanical, Electromagnetic and Thermodynamic Properties of Black Holes”, 294-369, (1979), Cambridge
[32] Carter, B., “Bunting Identity and Mazur Identity for Non-Linear Elliptic Systems Including the Black Hole Equilibrium Problem”, Commun. Math. Phys., 99, 563-591, (1985)
[33] Carter, B.; Carter, B. (ed.); Hartle, JB (ed.), “Mathematical Foundations of the Theory of Relativistic Stellar and Black Hole Configurations”, 63-122, (1987), New York
[34] Chandrasekhar, S., “Highly Collapsed Configurations of Stellar Mass”, Mon. Not. R. Astron. Soc., 91, 456-466, (1931) · Zbl 0002.10101
[35] Chandrasekhar, S., “The Maximum Mass of Ideal White Dwarfs”, Astro-phys. J., 74, 81-82, (1931) · Zbl 0002.23502
[36] Chandrasekhar, S.; Caldi, DG (ed.); Mostow, GD (ed.), “How one may Explore the Physical Content of the General Theory of Relativity”, 227-251, (1989), Yale University · Zbl 0687.53063
[37] Chandrasekhar, S., The Mathematical Theory ofBlack Holes and Colliding Plane Waves, (The University of Chicago Press, Chicago, 1991). 5, 6, 67 · Zbl 1036.01529
[38] Chruściel, P.T., “On Rigidity of Analytic Black Holes”, (October, 1996), [Online Los Alamos Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/abs/gr-qc/9610011. 7, 22
[39] Chruściel, PT, “‘No-Hair’ Theorems: Folklore, Conjectures, Results”, Differential Geometry and Mathematical Physics, 170, 23-49, (1994) · Zbl 0864.53068
[40] Chruściel, PT, “Uniqueness of Stationary, Electro-Vacuum Black Holes Revisited”, Helv. Phys. Acta, 69, 529-552, (1996) · Zbl 0867.53072
[41] Chruściel, P.T., and Galloway, G.J., “‘Nowhere’ Differentiable Horizons”, (November, 1996), [Online Los Alamos Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/abs/gr-qc/9611032. 7
[42] Chruściel, PT; Nadirashvili, NS, “All Electrovac Majumdar-Papapetrou Space-times with Non-Singular Black Holes”, Class. Quantum Grav., 12, l17-l23, (1995) · Zbl 0821.53058
[43] Chruściel, PT; Wald, RM, “Maximal Hyper-surfaces in Stationary Asymptotically Flat Space-Times”, Commun. Math. Phys., 163, 561-604, (1994) · Zbl 0803.53041
[44] Chruściel, PT; Wald, RM, “On the Topology of Stationary Black Holes”, Class. Quantum Grav., 11, l147-l152, (1994) · Zbl 0820.53064
[45] Clément, G.; Gal’tsov, DV, “Stationary BPS Solutions to Dilaton-Axion Gravity”, Phys. Rev. D, 54, 6136-6152, (1996)
[46] Coleman, S.; Zichichi, A. (ed.), “The Uses of Instantons”, (1979), New York
[47] DeFelice, F., and Clarke, C.J.S., Relativity on Curved Manifolds, (Cambridge University Press, Cambridge, 1990). 33
[48] Deser, S., “Absence of Static Solutions in Source-Free Yang-Mills Theory”, Phys. Lett. B, 64, 463-465, (1976)
[49] Deser, S., “Absence of Static Einstein-Yang-Mills Excitations in Three Dimensions”, Class Quantum Grav., 1, l1-l4, (1984)
[50] Droz, S.; Heusler, M.; Straumann, N., “New Black Hole Solutions with Hair”, Phys. Lett. B, 268, 371-376, (1991)
[51] Eichenherr, H.; Forger, M., “More about Non-Linear Sigma-Models on Symmetric Spaces”, Nucl. Phys. B, 164, 528-535, (1980)
[52] Ernst, FJ, “New Formulation of the Axially Symmetric Gravitational Field Problem”, Phys. Rev., 167, 1175-1178, (1968)
[53] Ernst, FJ, “New Formulation of the Axially Symmetric Gravitational Field Problem II”, Phys. Rev., 168, 1415-1417, (1968)
[54] Forgács, P.; Manton, NS, “Space-Time Symmetries in Gauge Theories”, Commun. Math. Phys., 72, 15-35, (1980)
[55] Friedman, JL; Schleich, K.; Witt, DM, “Topological Censorship”, Phys. Rev. Lett., 71, 1486-1489, (1993) · Zbl 0934.83033
[56] Galloway, GJ, “On the Topology of Black Holes”, Commun. Math. Phys, 151, 53-66, (1993) · Zbl 0776.53047
[57] Galloway, GJ, “On the Topology of the Domain of Outer Communication”, Class. Quantum Grav., 12, l99-l101, (1995) · Zbl 0835.53094
[58] Galloway, GJ, “A ‘Finite Infinity’ Version of the FSW Topological Censorship”, Class. Quantum Grav., 13, 1471-1478, (1996) · Zbl 0853.53069
[59] Galloway, GJ; E, W., “The Cosmic Censor forbids Naked Topology”, Class. Quantum Grav., 14, l1-l7, (1997) · Zbl 0868.53068
[60] Gal’tsov, D.V., “Square of General Relativity”, (August, 1996), [Online Los Alamos Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/abs/gr-qc/9608021. 4.3
[61] Gal’tsov, D.V., “Geroch-Kinnersley-Chitre Group for Dilaton-Axion Gravity”, (June, 1996), [Online Los Alamos Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/abs/hep-th/9606041. 48
[62] Gal’tsov, DV, “Integrable Systems in String Gravity”, Phys. Rev. Lett., 74, 2863-2866, (1995) · Zbl 1020.83665
[63] Gal’tsov, DV; Kechkin, OV, “Ehlers-Harrison-Type Transformations in Dilaton-Axion Gravity”, Phys. Rev. D, 50, 7394-7399, (1994)
[64] Gal’tsov, DV; Kechkin, OV, “Matrix Dilaton-Axion for the Heterotic String in three Dimensions”, Phys, Lett. B, 361, 52-58, (1995)
[65] Gal’tsov, DV; Kechkin, OV, “U-Duality and Simplectic Formulation of Dilaton-Axion Gravity”, Phys. Rev. D, 54, 1656-1666, (1996)
[66] Gal’tsov, DV; Letelier, PS, “Ehlers-Harrison Transformations and Black Holed in Dilaton-Axion Gravity with Multiple Vector Fields”, Phys. Rev. D, 55, 3580-3592, (1997)
[67] Gal’tsov, DV; Letelier, PS, “Interpolating Black Holes in Dilaton-Axion Gravity”, Class. Quantum Grav., 14, l9-l14, (1997) · Zbl 0867.53071
[68] Gal’tsov, DV; S. A, S., “Matrix Ernst Potentials for EMDA with Multiple Vector Fields”, Phys. Lett. B, 399, 250-257, (1997)
[69] Garfinkle, D.; Horowitz, GT; Strominger, A., “Charged Black Holes in String Theory”, Phys. Rev. D, 43, 741-775, (1991)
[70] Geroch, R., “A Method for Generating Solutions of Einstein’s Equations”, J. Math. Phys., 12, 918-924, (1971) · Zbl 0214.49002
[71] Geroch, R., “A Method for Generating New Solutions of Einstein’s Equations”, J. Math. Phys., 13, 394-404, (1972) · Zbl 0241.53038
[72] Gibbons, G.; Kallosh, R.; Kol, B., “Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics”, Phys. Rev. Lett., 77, 4992-4995, (1996)
[73] Gibbons, GW, “Anti-gravitating Black Hole Solutions with Scalar Hair in N = 4 Supergravity”, Nucl. Phys. B, 207, 337-349, (1982)
[74] Gibbons, GW; Barrow, JD (ed.); Henriques, AB (ed.); Lago, MTVT (ed.); Longair, MS (ed.), “Self-Gravitating Magnetic Monopoles, Global Mono-poles and Black Holes”, 110-133, (1990), Berlin
[75] Gibbons, GW; Hull, CM, “A Bogomol’nyi Bound for General Relativity and Solitons in \(N = 2\) Supergravity”, Phys. Lett., 109, 190-194, (1992)
[76] Gibbons, GW; Maeda, K., “Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields”, Nucl. Phys. B, 298, 741-775, (1988)
[77] Greene, BR; Mathur, SD; O’Neill, CM, “Eluding the No-Hair Conjecture: Black Holes in Spontaneously Broken Gauge Theories”, Phys. Rev. D, 47, 2242-2259, (1993)
[78] Hajicek, P., “General Theory of Vacuum Ergospheres”, Phys. Rev. D, 7, 2311-2316, (1973)
[79] Hajicek, P., “Stationary Electrovac Space-times with Bifurcate Horizon”, J. Math. Phys., 16, 518-527, (1975)
[80] Harnad, J.; Vinet, L.; Shnider, S., “Group Actions on Principal Bundles and Invariance Conditions for Gauge Fields”, J. Math. Phys., 21, 2719-2740, (1980) · Zbl 0454.55010
[81] Hartle, JB; Hawking, SW, “Solutions of the Einstein-Maxwell Equations with Many Black Holes”, Commun. Math. Phys., 26, 87-101, (1972)
[82] Hawking, SW, “Black Holes in General Relativity”, Commun. Math. Phys., 25, 152-166, (1972)
[83] Hawking, SW, “Particle Creation by Black Holes”, Commun. Math. Phys., 43, 199-220, (1975) · Zbl 1378.83040
[84] Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space Time, (Cambridge University Press, Cambridge, 1973). 2, 5, 2.1, 7, 9, 20, 22 · Zbl 0265.53054
[85] Heusler, M., “Staticity and Uniqueness of Multiple Black Hole Solutions of Sigma Models”, Class. Quantum Grav., 10, 791-799, (1993) · Zbl 0787.53080
[86] Heusler, M., “The Uniqueness Theorem for Rotating Black Hole Solutions of Self-gravitating Harmonic Mappings”, Class. Quantum Grav., 12, 2021-2036, (1995) · Zbl 0830.53067
[87] Heusler, M., Black Hole Uniqueness Theorems, (Cambridge University Press, Cambridge, 1996). 5, 16, 32, 33, 34, 38, 57 · Zbl 0945.83001
[88] Heusler, M., “No-Hair Theorems and Black Holes with Hair”, Helv. Phys. Acta, 69, 501-528, (1996) · Zbl 0869.53056
[89] Heusler, M., “Mass Formulae for a Class of Non-rotating Black Holes”, Phys. Rev. D, 56, 961-973, (1997)
[90] Heusler, M., “On the Uniqueness of the Papapetrou-Majumdar metric”, Class. Quantum Grav., 14, l129-l134, (1997) · Zbl 0884.53064
[91] Heusler, M.; Hehl, F. (ed.); Metzler, R. (ed.); Kiefer, K. (ed.), “Uniqueness Theorems for Black Hole Space-Times”, (1998), Berlin · Zbl 1023.83006
[92] Heusler, M.; Droz, S.; Straumann, N., “Stability Analysis of Self-Gravitating Skyrmions”, Phys. Lett. B, 271, 61-67, (1991)
[93] Heusler, M.; Droz, S.; Straumann, N., “Linear Stability of Einstein-Skyrme Black Holes”, Phys. Lett. B, 285, 21-26, (1992)
[94] Heusler, M.; Straumann, N., “The First Law of Black Hole Physics for a Class of Nonlinear Matter Models”, Class. Quantum Grav., 10, 12991322, (1993)
[95] Heusler, M.; Straumann, N., “Mass Variation Formulae for Einstein-Yang-Mills Higgs and Einstein Dilaton Black Holes”, Phys. Lett. B., 315, 55-66, (1993)
[96] Heusler, M.; Straumann, N., “Staticity, Circularity, and the First Law of Black Hole Physics”, Int. J. Mod. Phys. D, 3, 199-202, (1994)
[97] Heusler, M.; Straumann, N.; Zhou, Z-H, “Self-Gravitating Solutions of the Skyrme Model and their Stability”, Helv. Phys. Acta, 66, 614-632, (1993) · Zbl 0822.53065
[98] Horowitz, G.T., “Quantum States of Black Holes”, (April, 1997), [Online Los Alamos Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/abs/gr-qc/9704072. To be published in Black Holes andRelativity, ed. Wald, R.M. 3
[99] Israel, W., “Event Horizons in Static Vacuum Space-Times”, Phys. Rev., 164, 1776-1779, (1967)
[100] Israel, W., “Event Horizons in Static Electrovac Space-Times”, Commun. Math. Phys., 8, 245-260, (1968)
[101] Israel, W.; Hawking, SW (ed.); Israel, W. (ed.), “Dark Stars: The Evolution of an Idea”, 199-276, (1987), Cambridge · Zbl 0966.83504
[102] Israel, W.; Wilson, GA, “A Class of Stationary Electromagnetic Vacuum Fields”, J. Math. Phys., 13, 865-867, (1972)
[103] Jacobson, T.; Venkatarami, S., “Topological Censorship”, Class. Quantum Grav., 12, 1055-1061, (1995) · Zbl 0826.53074
[104] Jadczyk, A., “Symmetry of Einstein-Yang-Mills Systems and Dimensional Reduction”, J. Geom. Phys., 1, 97-126, (1984) · Zbl 0598.53069
[105] Kay, BS; Wald, RM, “Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasi-free States on Space-times with a Bifurcate Horizon”, Phys. Rep., 207, 49-136, (1991) · Zbl 0861.53074
[106] Kinnersley, W., “Generation of Stationary Einstein-Maxwell Fields”, J. Math. Phys., 14, 651-653, (1973)
[107] Kinnersley, W., “Symmetries of the Stationary Einstein-Maxwell Field Equations. I”, J. Math. Phys., 18, 1529-1537, (1977)
[108] Kinnersley, W.; Chitre, DM, “Symmetries of the Stationary Einstein-Maxwell Field Equations. II”, J. Math. Phys., 18, 1538-1542, (1977)
[109] Kinnersley, W.; Chitre, DM, “Symmetries of the Stationary Einstein-Maxwell Field Equations. III”, J. Math. Phys., 19, 1926-1931, (1978)
[110] Kinnersley, W.; Chitre, DM, “Symmetries of the Stationary Einstein-Maxwell Field Equations. IV”, J. Math. Phys., 19, 2037-2042, (1978)
[111] Kleihaus, B., and Kunz, J., “Static Regular and Black Hole Solutionswith Axial Symmetry in EYM and EYMD Theory”, (October, 1997),[Online Los Alamos Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/abs/gr-qc/97100047. 18, 24
[112] Kleihaus, B., and Kunz, J., “Static Axially Symmetric Einstein Yang-Mills Solutions: 1. Regular Solutions”, (July, 1997), [Online Los Alamos Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/abs/gr-qc/9707045. 26 · Zbl 1042.83513
[113] Kleihaus, B.; Kunz, J., “Axially Symmetric Multi-Sphalerons in Yang-Mills Dilaton Theory”, Phys. Lett. B, 392, 135-140, (1997) · Zbl 1042.83513
[114] Kleihaus, B.; Kunz, J., “Static Axially Symmetric Solutions of Einstein Yang-Mills Dilaton Theory”, Phys. Rev. Lett., 78, 2527-2530, (1997) · Zbl 1042.83513
[115] Kleihaus, B.; Kunz, J., “Static Black Hole Solutions with Axial Symmetry”, Phys. Rev. Lett., 79, 1595-1598, (1997) · Zbl 1042.83519
[116] Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, Vol. II, (Interscience, Wiley, New York, 1969). 42, 47 · Zbl 0175.48504
[117] Kramer, D., Stephani, H., MacCallum, M., and Herlt, E., Exact Solutions of Einstein’s Equations, (Cambridge University Press, Cambridge, 1980).4 · Zbl 0449.53018
[118] Kundt, W.; Trümper, M., “Orthogonal Decomposition of Axisymmetric Stationary Space-times”, Z. Phys., 192, 419-422, (1966)
[119] Künzle, HP, “\( SU (N)\) Einstein-Yang-Mills Fields with Spherical Symmetry”, Class. Quantum Grav., 8, 2283-2297, (1991) · Zbl 0733.53061
[120] Künzle, HP, “Analysis of the Static Spherically Symmetric SU(N) Einstein-Yang-Mills Equations”, Commun. Math. Phys., 162, 371-397, (1994) · Zbl 0813.53049
[121] Künzle, HP, “Einstein-Yang-Mills Fields with Spherical Symmetry”, Differential Geometry and Mathematical Physics, 170, 167-184, (1994) · Zbl 0864.53018
[122] Künzle, HP; Masood-ul Alam, AKM, “Spherically Symmetric Static SU(2) Einstein-Yang-Mills Fields”, J. Math. Phys., 31, 928-935, (1990) · Zbl 0701.53091
[123] Laplace, P.S., Exposition du Système du Monde, (J.B.M. Duprat, Paris,1796). 1.1 · Zbl 1227.70004
[124] Lavrelashvili, G.; Maison, D., “Regular and Black Hole Solutions of Einstein-Yang-Mills-Dilaton Theory”, Nucl. Phys. B, 410, 407-422, (1993) · Zbl 0990.83508
[125] Lee, K.; Nair, VP; Weinberg, EJ, “A Classical Instability of Reissner-Nordström Solutions and the Fate of Magnetically Charged Black Holes”, Phys. Rev. Lett., 68, 1100-1103, (1992) · Zbl 0969.83516
[126] Lichnerowicz, A., Théories Relativistes de la Gravitation et de l’Electromagnétisme, (Masson, Paris, 1955). 10 · Zbl 0065.20704
[127] Maison, D., “On the Complete Integrability of the Stationary, Axially Symmetric Einstein Equations”, J. Math. Phys., 20, 871-877, (1979)
[128] Majumdar, SD, “A Class of Exact Solutions of Einstein’s Field Equations”, Phys. Rev., 72, 390-398, (1947)
[129] Masood-ul Alam, AKM, “Uniqueness Proof of Static Black Holes Revisited”, Class. Quantum Grav., 9, l53-l55, (1992) · Zbl 0991.83546
[130] Masood-ul Alam, AKM, “Uniqueness of a Static Charged Dilaton Black Hole”, Class. Quantum Grav., 10, 2649-2656, (1993) · Zbl 0787.53081
[131] Mazur, PO, “Proof of Uniqueness of the Kerr-Newman Black Hole Solution”, J. Math. Phys., 15, 3173-3180, (1982) · Zbl 1141.83304
[132] Mazur, PO, “Black Hole Uniqueness from a Hidden Symmetry of Einstein’s Gravity”, Gen. Rel. Grav., 16, 211-215, (1984) · Zbl 0531.53025
[133] Mazur, PO, “A Global Identity for Nonlinear Sigma-Models”, Phys. Lett. A, 100, 341-344, (1984)
[134] Michell, J., “On the Means of Discovering the Distance…”, Philos. Trans. R. Soc. London, 74, 35-57, (1784)
[135] Milnor, J., Morse Theory, (Princeton University Press, Princeton, 1963).64 · Zbl 0108.10401
[136] Misner, CW, “The Flatter Regions of Newman, Unti, and Tamburino’s Generalized Schwarzschild Space”, J. Math. Phys., 4, 924-937, (1965)
[137] Müller zum Hagen, H.; Robinson, DC; Seifert, HJ, “Black Hole in Static Vacuum Space-Times”, Gen. Rel. Grav., 4, 53-78, (1973)
[138] Müller zum Hagen, H.; Robinson, DC; Seifert, HJ, “Black Holes in Static Electrovac Space-Times”, Gen. Rel. Grav., 5, 61-72, (1974)
[139] Neugebauer, G.; Kramer, D., “Eine Methode zur Konstruktion stationärer Einstein-Maxwell Felder”, Ann. Phys. (Leipzig), 24, 62-71, (1969)
[140] Newman, ET; Tamburino, L.; Unti, T., “Empty-Space Generalization of the Schwarzschild Metric”, J. Math. Phys., 4, 915-923, (1963) · Zbl 0115.43305
[141] Oppenheimer, JR; Snyder, H., “On Continued Gravitational Contraction”, Phys. Rev., 56, 455-459, (1939) · Zbl 0022.28104
[142] Oppenheimer, JR; Volkoff, G., “On Massive Neutron Cores”, Phys. Rev., 55, 374-381, (1939) · Zbl 0020.28501
[143] Papapetrou, A., “A Static Solution of the Gravitational Field for an Arbitrary Charge-Distribution”, Proc. Roy. Irish Acad., 51, 191-204, (1945)
[144] Papapetrou, A., “Eine Rotationssymmetrische Laosung in der Allgemeinen Relativitätstheorie”, Ann. Phys. (Leipzig), 12, 309-315, (1953) · Zbl 0052.44302
[145] Perjes, Z., “Solutions of the Coupled Einstein-Maxwell Equations Representing the Fields of Spinning Sources”, Phys. Rev. Lett., 27, 1668-1670, (1971)
[146] Rácz, I.; Wald, R. M., “Extension of Space-times with Killing Horizons”, Class. Quantum Grav., 9, 2643-2656, (1992) · Zbl 0782.53061
[147] Rácz, I.; Wald, R. M., “Global Extensions of Space-times Describing Asymptotic Finite States of Black Holes”, Class. Quantum Grav., 13, 539-552, (1995) · Zbl 0866.53071
[148] Rees, M., “Astrophysical Evidence for Black Holes”, (January, 1997), [Online Los Alamos Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/abs/astro-phys/9701161. To be published in Black Holes and Relativity, ed. Wald, R.M. 2
[149] Ridgway, SA; Weinberg, EJ, “Are All Static Black Hole Solutions Spherically Symmetric?”, Gen. Rel. Grav., 27, 1017-1021, (1995) · Zbl 0837.53065
[150] Ridgway, SA; Weinberg, EJ, “Static Black Hole Solutions without Rotational Symmetry”, Phys. Rev. D, 52, 3440-3456, (1995)
[151] Robinson, DC, “Classification of Black Holes with Electromagnetic Fields”, Phys. Rev., 10, 458-460, (1974)
[152] Robinson, DC, “Uniqueness of the Kerr Black Hole”, Phys. Rev. Lett., 34, 905-906, (1975)
[153] Robinson, DC, “A Simple Proof of the Generalization of Israel’s Theorem”, Gen. Rel. Grav., 8, 695-698, (1977) · Zbl 0429.53043
[154] Ruback, P., “A New Uniqueness Theorem for Charged Black Holes”, Class. Quantum Grav., 5, l155-l159, (1988) · Zbl 0646.53077
[155] Schoen, R.; Yau, S-T, “On the Proof of the Positive Mass Conjecture in General Relativity”, Commun. Math. Phys., 65, 45-76, (1979) · Zbl 0405.53045
[156] Schoen, R.; Yau, S-T, “Proof of the Positive Mass Theorem”, Commun. Math. Phys., 79, 231-260, (1981) · Zbl 0494.53028
[157] Schwarzschild, K., “Ueber das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie”, Sitzungsber. Königl. Preuss. Akad. Wiss., Physik-Math. Klasse, 13. Jan., III, 424-434, (1916) · JFM 46.1297.01
[158] Schwarzschild, K., “Ueber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsber. Konigl. Preuss. Akad. Wiss., Physik-Math. Klasse, 14. Feb., XII, 189-196, (1916). 2 · JFM 46.1296.02
[159] Shaposhnikov, ME, “Sphalerons and Baryogenesis”, Class. Quantum Grav. (Suppl., 10, 147-154, (1993)
[160] Simon, W., “A Simple Proof of the Generalized Israel Theorem”, Gen. Rel. Grav., 17, 761-768, (1985)
[161] Smarr, L., “Mass Formula for Kerr Black Holes”, Phys. Rev. Lett., 30, 71-73, (1973)
[162] Smoller, JA; Wasserman, AG, “Existence of Black Hole Solutions for the Einstein-Yang-Mills Equations”, Commun. Math. Phys., 154, 377401, (1993)
[163] Smoller, JA; Wasserman, AG, “Existence of Infinitely Many Smooth, Static, Global Solutions of the Einstein-Yang-Mills Equations”, Commun. Math. Phys., 151, 303-325, (1993) · Zbl 0778.53026
[164] Smoller, JA; Wasserman, AG; Yau, ST, “Smooth Static Solutions of the Einstein-Yang-Mills Equations”, Commun. Math. Phys., 143, 115147, (1991)
[165] Straumann, N., General Relativity and Relativistic Astrophysics, (Springer-Verlag, Berlin, 1984). 4.2
[166] Straumann, N.; Zhou, Z-H, “Instability of a Colored Black Hole Solution”, Phys. Lett. B, 243, 33-35, (1990)
[167] Sudarsky, D.; Wald, RM, “Extrema of Mass, Stationarity and Staticity, and Solutions to the Einstein-Yang-Mills Equations”, Phys. Rev. D, 46, 1453-1474, (1992)
[168] Sudarsky, D.; Wald, RM, “Mass Formulas for Stationary Einstein-Yang-Mills Black Holes and a Simple Proof of Two Staticity Theorems”, Phys. Rev. D, 47, r5209-r5213, (1993)
[169] Sudarsky, D., and Zannias, T., “No Scalar Hair for Spherical Black Holes”, Talk given at it The Eight Marcel Grossmann Meeting, Jerusalem, June22-27, 1997. 4
[170] Szabados, LB, “Commutation Properties of Cyclic and Null Killing Symmetries”, J. Math. Phys., 28, 2688-2691, (1987) · Zbl 0642.53028
[171] Taubes, CH; Parker, T., “On Witten’s Proof of the Positive Energy Theorem”, Commun. Math. Phys., 84, 223-238, (1982) · Zbl 0528.58040
[172] Vishveshwara, CV, “Generalization of the ‘Schwarzschild Surface’ to Arbitrary Static and Stationary Metrics”, J. Math. Phys., 9, 1319-1322, (1968) · Zbl 0182.60001
[173] Volkov, MS; Brodbeck, O.; Lavrelashvili, G.; Straumann, N., “The Number of Sphaleron Instabilities of the Bartnik-McKinnon Solitons and Non-Abelian Black Holes”, Phys. Lett. B, 349, 438-442, (1995)
[174] Volkov, MS; Gal’tsov, DV, “Non-Abelian Einstein-Yang-Mills Black Holes”, JETP Lett., 50, 346-350, (1989)
[175] Volkov, MS; Straumann, N., “Slowly Rotating Non-Abelian Black Holes”, Phys. Rev. Lett., 79, 1428-1431, (1997) · Zbl 1042.83522
[176] Volkov, MS; Straumann, N.; Lavrelashvili, G.; Heusler, M.; Brod-beck, O., “Cosmological Analogs of the Bartnik-McKinnon Solutions”, Phys. Rev. D, 54, 7243-7251, (1996)
[177] Wald, R.M., “Black Holes and Thermodynamics”, (February, 1997), [Online Los Alamos Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/abs/gr-qc/9702022. To be published in Black Holes and Relativity, ed. Wald, R.M. 3
[178] Wald, R.M., General Relativity, (The University of Chicago Press, Chicago, London, 1984). 5, 30, 34, 36 · Zbl 0549.53001
[179] Wald, RM, “On the Instability of the \(N = 1\) Einstein-Yang-Mills Black Holes and Mathematically Related Systems”, J. Math. Phys., 33, 248-255, (1992) · Zbl 0745.76021
[180] Weinberg, EJ, “Non-topological Magnetic Monopoles and New Magnetically Charged Black Holes”, Phys. Rev. Lett., 73, 1203-1206, (1994)
[181] Weinberg, E.W., “Magnetically Charged Black Holes with Hair”, (March, 1995), [Online Los Alamos Archive Preprint]: cited on 11 November 1997, http://xxx.lanl.gov/abs/gr-qc/9503032. 17
[182] Weinstein, G., “On Rotating Black Holes in Equilibrium in General Relativity”, Commun. Pure Appl. Math., 43, 903-948, (1990) · Zbl 0709.53063
[183] Winstanley, E.; Mavromatos, NE, “Instability of Hairy Black Holes in Spontaneously Broken Einstein-Yang-Mills Higgs Systems”, Phys. Lett. B, 352, 242-246, (1959)
[184] Witten, E., “A New Proof of the Positive Energy Theorem”, Commun. Math. Phys., 80, 381-402, (1981) · Zbl 1051.83532
[185] Zhou, Z-H, “Instability of SU(2) Einstein-Yang-Mills Solitons and Non-Abelian Black Holes”, Helv. Phys. Acta, 65, 767-819, (1992)
[186] Zhou, Z-H; Straumann, N., “Nonlinear Perturbations of Einstein-Yang-Mills Solutions and Non-Abelian Black Holes”, Nucl. Phys. B, 360, 180-196, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.