×

Discrete approaches to quantum gravity in four dimensions. (English) Zbl 1023.83011

Summary: The construction of a consistent theory of quantum gravity is a problem in theoretical physics that has so far defied all attempts at resolution. One ansatz to try to obtain a non-trivial quantum theory proceeds via a discretization of space-time and the Einstein action. Here the author reviews three major areas of research: gauge-theoretic approaches, both in a path-integral and a Hamiltonian formulation; quantum Regge calculus; and the method of dynamical triangulations, confining attention to work that is strictly four-dimensional, strictly discrete, and strictly quantum in nature.

MSC:

83C45 Quantization of the gravitational field
81V17 Gravitational interaction in quantum theory
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
PDF BibTeX XML Cite
Full Text: DOI arXiv EuDML Link

References:

[1] Agishtein, M.E., and Migdal, A.A., ”Critical behavior of dynamically triangulated quantum gravity in four-dimensions”, Nucl. Phys. B, 385, 395–412, (1992). For a related online version see: M.E. Agishtein, et al., ”Critical behavior of dynamically triangulated quantum gravity in four-dimensions”, (April, 1992), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9204004. 4.1, 4.5, 4.6 · Zbl 1020.83534
[2] Agishtein, M.E., and Migdal, A.A., ”Simulations of four-dimensional simplicial quantum gravity as dynamical triangulation”, Mod. Phys. Lett. A, 7, 1039–1061, (1992). 4.1, 4.2, 4.5, 4.6 · Zbl 1020.83534
[3] Ambjørn, J., ”Quantum gravity represented as dynamical triangulations”, Class. Quantum Grav., 12, 2079–2134, (1995). 4.1 · Zbl 0838.53068
[4] Ambjørn, J., ”Recent progress in the theory of random surfaces and simplicial quantum gravity”, Nucl. Phys. Proc. Suppl., 42, 3–16, (1995). For a related online version see: J. Ambjørn, ”Recent progress in the theory of random surfaces and simplicial quantum gravity”, (December, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9412006. 4.1 · Zbl 06726222
[5] Ambjørn, J., ”Quantization of geometry”, in David, F., Ginsparg, P., and Zinn-Justin, J., eds., Fluctuating geometries in statistical mechanics and field theory (Les Houches Summer School, Session LXII, 1994), 77–193, (Elsevier, Amsterdam, 1996). For a related online version see: J. Ambjørn, ”Quantization of geometry”, (November, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9411179. 4.1
[6] Ambjørn, J., Burda, Z., Jurkiewicz, J., and Kristjansen, C.F., ”Quantum gravity represented as dynamical triangulations”, Acta Phys. Pol. B, 23, 991–1030, (1992). 4.1
[7] Ambjørn, J., Burda, Z., Jurkiewicz, J., and Kristjansen, C.F., ”Four-dimensional dynamically triangulated gravity coupled to matter”, Phys. Rev. D, 48, 3695–3703, (1993). For a related online version see: J. Ambjørn, et al., ”Four-dimensional dynamically triangulated gravity coupled to matter”, (March, 1993), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9303042. 4.6, 4.9
[8] Ambjørn, J., Carfora, M., and Marzuoli, A., The geometry of dynamical triangulations, volume m50 of Lecture Notes in Physics, New Series, (Springer, Berlin, 1997). For a related online version see: J. Ambjørn, et al., ”The geometry of dynamical triangulations”, (December, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9612069. 3.1, 4.1, 4.3, 4.4 · Zbl 0892.53033
[9] Ambjørn, J., Durhuus, B., and Jonsson, T., Quantum geometry, (Cambridge University Press, Cambridge, 1997). 4.1 · Zbl 0993.82500
[10] Ambjørn, J., Jain, S., Jurkiewicz, J., and Kristjansen, C.F., ”Observing 4-d baby universes in quantum gravity”, Phys. Lett. B, 305, 208–213, (1993). For a related online version see: J. Ambjørn, et al., ”Observing 4-d baby universes in quantum gravity”, (March, 1993), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9303041. 4.4
[11] Ambjørn, J., and Jurkiewicz, J., ”Four-dimensional simplicial quantum gravity”, Phys. Lett. B, 278, 42–50, (1992). 4.1, 4.2, 4.5, 4.6, 4.13
[12] Ambjørn, J., and Jurkiewicz, J., ”On the exponential bound in four-dimensional simplicial gravity”, Phys. Lett. B, 335, 355–358, (1994). For a related online version see: J. Ambjørn, et al., ”On the exponential bound in four-dimensional simplicial gravity”, (May, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9405010. m4.3
[13] Ambjørn, J., and Jurkiewicz, J., ”Computational ergodicity of S4”, Phys. Lett. B, 345, 435–440, (1995). For a related online version see: J. Ambjørn, et al., ”Computational ergodicity of S4”, (November, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9411008. m4.4
[14] Ambjørn, J., and Jurkiewicz, J., ”Scaling in four dimensional quantum gravity”, Nucl. Phys. B, 451, 643–676, (1995). For a related online version see: J. Ambjørn, et al., ”Scaling in four dimensional quantum gravity”, (March, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9503006. m4.4, 4.5, 4.6,4.13, 4.14 · Zbl 0925.83005
[15] Ambjørn, J., Jurkiewicz, J., Bilke, S., Burda, Z., and Petersson, B., ”Z(2) gauge matter coupled to 4-d simplicial quantum gravity”, Mod. Phys. Lett. A, 9, 2527–2542, (1994). 4.9 · Zbl 1015.83503
[16] Ambjørn, J., Jurkiewicz, J., and Kristjansen, C.F., ”Quantum gravity, dynamical triangulation and higher derivative regularization”, Nucl. Phys. B, 393, 601–632, (1993). For a related online version see: J. Ambjørn, et al., ”Quantum gravity, dynamical triangulation and higher derivative reg-ularization”, (August, 1992), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9208032. 4.6, 4.8, 4.9, 4.14 · Zbl 1245.83007
[17] Ambjørn, J., Jurkiewicz, J., and Watabiki, Y., ”Dynamical triangulations, a gateway to quantum gravity?”, J. Math. Phys., 36, 6299–6339, (1995). For a related online version see: J. Ambjørn, et al., ”Dynamical triangulations, a gateway to quantum gravity?”, (March, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9503108. 4.1 · Zbl 0848.57019
[18] Ambjørn, J., Nielsen, J.L., Rolf, J., and Savvidy, G., ”Spikes in quantum Regge calculus”, Class. Quantum Grav., 14, 3225–3241, (1997). For a related online version see: J. Ambjørn, et al., ”Spikes in quantum Regge calculus”, (April, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9704079. 3.1 · Zbl 0904.53054
[19] Ambjørn, J., Savvidy, G.K., and Savvidy, K.G., ”Alternative actions for quantum gravity and the intrinsic rigidity of the space-time”, Nucl. Phys. B, 486, 390–412, (1997). For a related online version see: J. Ambjørn, et al., ”Alternative actions for quantum gravity and the intrinsic rigidity of the space-time”, (June, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9606140. 3.2, 4.11 · Zbl 0925.83010
[20] Antoniadis, I., Mazur, P.O., and Mottola, E., ”Scaling behavior of quantum four-geometries”, Phys. Lett. B, 323, 284–291, (1994). For a related online version see: I. Antoniadis, et al., ”Scaling behavior of quantum four-geometries”, (January, 1993), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9301002. 4.8
[21] Antoniadis, I., Mazur, P.O., and Mottola, E., ”Criticality and scaling in 4d quantum gravity”, Phys. Lett. B, 394, 49–56, (1997). For a related online version see: I. Antoniadis, et al., ”Criticality and scaling in 4d quantum gravity”, (November, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9611145. 4.9
[22] Ashtekar, A., ”New variables for classical and quantum gravity”, Phys. Rev. Lett., 57, 2244–2247, (1986). 2.9
[23] Ashtekar, A., ”A new Hamiltonian formulation of general relativityrd,Phys. Rev. D, 36, 1587–1603, (1987). 2.9
[24] Bander, M., ”Functional measure for lattice gravity”, Phys. Rev. Lett.,57, 1825–1827, (1986). 3.13
[25] Barbero G., J.F., ”Real Ashtekar variables for Lorentzian signature space-times”, Phys. Rev. D, 51, 5507–5510, (1995). For a related online version see: J.F. Barbero G., ”Real Ashtekar variables for Lorentzian signature space-times”, (October, 1994), [Online Los Alamos ArchivePreprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9410014. 2.16
[26] Bartocci, C., Bruzzo, U., Carfora, M., and Marzuoli, A., ”Entropy of random coverings and 4D quantum gravity”, J. Geom. Phys., 18, 247–294, (1996). For a related online version see: C. Bartocci, et al., ”Entropy of random coverings and 4D quantum gravity”, (December, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9412097. 4.3 · Zbl 0895.54008
[27] Beirl, W., Berg, B.A., Krishnan, B., Markum, H., and Riedler, J., ”Static quark potentials in quantum gravity”, Phys. Lett. B, 348, 355–359, (1995). For a related online version see: W. Beirl, et al., ”Static quark potentials in quantum gravity”, (February, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9502006. 3.10, 3.10
[28] Beirl, W., Berg, B.A., Krishnan, B., Markum, H., and Riedler, J., ”SU(2) potentials in quantum gravity”, Nucl. Phys. Proc. Suppl., 42, 707–709, (1995). For a related online version see: W. Beirl, et al., ”SU(2) potentials in quantum gravity”, (December, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9412037. 3.10, 3.10 · Zbl 06726398
[29] Beirl, W., Gerstenmayer, E., and Markum, H., ”Exploration of simplicial quantum gravity in four dimensions”, Nucl. Phys. Proc. Suppl., 26, 575577, (1992). 3.5 · Zbl 0957.83509
[30] Beirl, W., Gerstenmayer, E., and Markum, H., ”Influence of the measure on simplicial quantum gravity in four-dimensions”, Phys. Rev. Lett., 69, 713–716, (1992). For a related online version see: W. Beirl, et al., ”Influence of the measure on simplicial quantum gravity in four-dimensions”, (April, 1992), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9204010. 3.5 · Zbl 0957.83509
[31] Beirl, W., Gerstenmayer, E., Markum, H., and Riedler, J., ”Gravitational action versus entropy on simplicial lattices in four-dimensions”, Nucl. Phys. Proc. Suppl., 30, 764–767, (1993). For a related online version see: W. Beirl, et al., ”Gravitational action versus entropy on simpli-cial lattices in four-dimensions”, (November, 1992), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9211044. 3.7, 3.9
[32] Beirl, W., Gerstenmayer, E., Markum, H., and Riedler, J., ”The well defined phase of simplicial quantum gravity in four-dimensions”, Phys. Rev. D, 49, 5231–5239, (1994). For a related online version see: W. Beirl, et al., ”The well defined phase of simplicial quantum gravity in four-dimensions”, (February, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9402002. 3.7 · Zbl 0957.83509
[33] Beirl, W., Hauke, A., Homolka, P., Krishnan, B., Kroger, H., Markum, H., and Riedler, J., ”The phase structure of pure Regge gravity”, Nucl. Phys. Proc. Suppl., 47, 625–628, (1996). For a related online version see: W. Beirl, et al., ”The phase structure of pure Regge gravity”, (October, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9510021. 3.9
[34] Beirl, W., Hauke, A., Homolka, P., Markum, H., and Riedler, J., ”Correlation functions in lattice formulations of quantum gravity”, Nucl. Phys. Proc. Suppl., 53, 735–738, (1997). For a related online version see: W. Beirl, et al., ”Correlation functions in lattice formulations of quantum gravity”, (August, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9608055. 3.8,3.9 · Zbl 0933.83016
[35] Beirl, W., Markum, H., and Riedler, J., ”On the measure of simpli-cial quantum gravity in four-dimensions”, in Carr, J., and Perrottet, M., eds., High energy physics: 1993 International Europhysics Conference, 214–216, (Editions Frontieres, Gif-sur-Yvette, 1994). For a related online version see: W. Beirl, et al., ”On the measure of simpli-cial quantum gravity in four-dimensions”, (September, 1993), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9309008. 3.7
[36] Beirl, W., Markum, H., and Riedler, J., ”Regge gravity on general trian-gulations”, Phys. Lett. B, 341, 12–18, (1994). For a related online version see: W. Beirl, et al., ”Regge gravity on general triangulations”, (July, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9407020. 3.9
[37] Beirl, W., Markum, H., and Riedler, J., ”Two point functions of four-dimensional simplicial quantum gravity”, Nucl. Phys. Proc. Suppl., 34, 736–738, (1994). For a related online version see: W. Beirl, et al., ”Two point functions of four-dimensional simplicial quantum gravity”, (December, 1993), [Online Los Alamos Archive Preprint]: cited on 19 November1998, http://xxx.lanl.gov/abs/hep-lat/9312053. 3.8
[38] Berg, B.A., ”Exploratory numerical study of discrete quantum gravity”, Phys. Rev. Lett., 55, 904–907, (1985). 3.3
[39] Berg, B.A., ”Entropy versus energy on a fluctuating four-dimensional Regge skeleton”, Phys. Lett. B, 176, 39–44, (1986). 3.3
[40] Berg, B.A., ”Quantum gravity motivated computer simulations”, in Mitter, H., and Widder, F., eds., Particle physics and astrophysics, 223–259,(Springer, Berlin, 1989). 3.1, 3.3
[41] Berg, B.A., Beirl, W., Krishnan, B., Markum, H., and Riedler, J., ”Phase diagram of Regge quantum gravity coupled to SU(2) gauge theory”, Phys. Rev. D, 54, 7421–7425, (1996). For a related online version see: B.A. Berg, et al., ”Phase diagram of Regge quantum gravity coupled to SU(2) gauge theory”, (May, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9605036. 3.10, 3.10
[42] Berg, B.A., and Krishnan, B., ”Asymptotic freedom and Regge-Einstein quantum gravity”, Nucl. Phys. Proc. Suppl., 30, 768–770, (1993). 3.10, 3.10
[43] Berg, B.A., and Krishnan, B., ”Phase structure of SU(2) lattice gauge theory with quantum gravity”, Phys. Lett. B, 318, 59–62, (1993). For a related online version see: B.A. Berg, et al., ”Phase structure of SU(2) lattice gauge theory with quantum gravity”, (June, 1993), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9306006. 3.10, 3.10
[44] Berg, B.A., Krishnan, B., and Katoot, M., ”Asymptotic freedom and Euclidean quantum gravity”, Nucl. Phys. B, 404, 359–384, (1993). For a related online version see: B.A. Berg, et al., ”Asymptotic freedom and Euclidean quantum gravity”, (September, 1992), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9209001. 3.10, 3.10 · Zbl 1043.83528
[45] Bialas, P., ”Correlations in fluctuating geometries”, Nucl. Phys. Proc. Suppl., 53, 739–742, (1997). For a related online version see: P. Bialas, ”Correlations in fluctuating geometries”, (August, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9608029. 4.14
[46] Bialas, P., and Burda, Z., ”Collapse of 4-d random geometries”, Phys. Lett. B, 416, 281–285, (1998). For a related online version see: P. Bialas, et al., ”Collapse of 4-d random geometries”, (July, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9707028. 4.6
[47] Bialas, P., Burda, Z., and Johnston, D.A., ”Balls in boxes and quantum gravity”, Nucl. Phys. Proc. Suppl., 63, 763–765, (1998). For a related online version see: P. Bialas, et al., ”Balls in boxes and quantum gravity”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9709056. 4.6
[48] Bialas, P., Burda, Z., Krzywicki, A., and Petersson, B., ”Focusing on the fixed point of 4-d simplicial gravity”, Nucl. Phys. B, 472, 293–308, (1996). For a related online version see: P. Bialas, et al., ”Focusing on the fixed point of 4-d simplicial gravity”, (January, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9601024. 4.5, 4.6, 4.12, 4.14
[49] Bialas, P., Burda, Z., Petersson, B., and Tabaczek, J., ”Appearance of mother universe and singular vertices in random geometries”, Nucl. Phys. B, 495, 463–476, (1997). For a related online version see: P. Bialas, et al., ”Appearance of mother universe and singular vertices in random geometries”, (August, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9608030. 4.6, 4.11 · Zbl 0935.83004
[50] Bilke, S., Burda, Z., and Jurkiewicz, J., ”Simplicial quantum gravity on a computer”, Computer Phys. Commun., 85, 278–292, (1995). For a related online version see: S. Bilke, et al., ”Simplicial quantum gravity on a computer”, (March, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9403017. 4.4 · Zbl 0873.65002
[51] Bilke, S., Burda, Z., Krzywicki, A., and Petersson, B., ”Phase transition and topology in 4-d simplicial gravity”, Nucl. Phys. Proc. Suppl., 53, 743–745, (1997). For a related online version see: S. Bilke, et al., ”Phase transition and topology in 4-d simplicial gravity”, (August, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9608027. 4.4, 4.6, 4.10
[52] Bilke, S., Burda, Z., Krzywicki, A., Petersson, B., Tabaczek, J., and Thorleifsson, G., ”4-d simplicial quantum gravity interacting with gauge matter fields”, Phys. Lett. B, 418, 266–272, (1998). For a related online version see: S. Bilke, et al., ”4-d simplicial quantum gravity interacting with gauge matter fields”, (October, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9710077. 4.9 · Zbl 1052.83511
[53] Bilke, S., Burda, Z., and Petersson, B., ”Topology in 4-d simplicial quantum gravity”, Phys. Lett. B, 395, 4–9, (1997). For a related online version see: S. Bilke, et al., ”Topology in 4-d simplicial quantum gravity”, (November, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9611020. 4.4, 4.10
[54] Bowick, M., ”Random surfaces and lattice gravity”, Nucl. Phys. Proc. Suppl., 63, 77–88, (1998). For a related online version see: M. Bow-ick, ”Random surfaces and lattice gravity”, (October, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9710005. 4.1
[55] Brewin, L., ”The Riemann and extrinsic curvature tensors in the Regge calculus”, Class. Quantum Grav., 5, 1193–1203, (1988). 3.2 · Zbl 0646.53078
[56] Brügmann, B., ”Measure of four-dimensional simplicial quantum gravity”, Nucl. Phys. Proc. Suppl., 30, 760–763, (1993). 4.7 · Zbl 0990.83511
[57] Brügmann, B., ”Nonuniform measure in four-dimensional simplicial quantum gravity”, Phys. Rev. D, 47, 3330–3338, (1993). For a related online version see: B. Brügmann, ”Nonuniform measure in four-dimensional simplicial quantum gravity”, (October, 1992), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9210001. 4.4, 4.7
[58] Brügmann, B., and Marinari, E., ”4-d simplicial quantum gravity with a nontrivial measure”, Phys. Rev. Lett., 70, 1908–1911, (1993). For a related online version see: B. Brügmann, et al., ”4-d simplicial quantum gravity with a nontrivial measure”, (October, 1992), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9210002. 4.7 · Zbl 1051.83506
[59] Brügmann, B., and Marinari, E., ”Monte Carlo simulations of 4d simplicial quantum gravity”, J. Math. Phys., 36, 6340–6352, (1995). For arelated online version see: B. Brügmann, et al., ”Monte Carlo simulations of 4d simplicial quantum gravity”, (April, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9504004. 4.1 · Zbl 0841.65134
[60] Brügmann, B., and Marinari, E., ”More on the exponential bound of four-dimensional simplicial quantum gravity”, Phys. Lett. B, 349, 35–41, (1995). For a related online version see: B. Brügmann, et al., ”More on the exponential bound of four-dimensional simplicial quantum gravity”, (November, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9411060. 4.3
[61] Burda, Z., Kownacki, J.P., and Krzywicki, A., ”Towards a nonperturba-tive renormalization of Euclidean quantum gravity”, Phys. Lett. B, 356, 466–471, (1995). For a related online version see: Z. Burda, et al., ”Towards a nonperturbative renormalization of Euclidean quantum gravity”, (May, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9505104. 4.12
[62] Caracciolo, S., Menotti, P., and Pelissetto, A., ”Lattice supergravity and graviton-gravitino doubling”, Nucl. Phys. B, 296, 868–876, (1988). 2.5
[63] Caracciolo, S., and Pelissetto, A., ”Analysis of the critical behavior or the de Sitter quantum gravity on a hypercubic lattice”, Phys. Lett. B, 193,237–240, (1987). 2.3
[64] Caracciolo, S., and Pelissetto, A., ”Nonperturbative lattice gravity”, Nucl. Phys. Proc. Suppl., 4, 78–82, (1987). 2.3 · Zbl 0957.83512
[65] Caracciolo, S., and Pelissetto, A., ”A numerical investigation about quantum measure in lattice gravity”, Phys. Lett. B, 207, 468–470, (1988). 2.3
[66] Caracciolo, S., and Pelissetto, A., ”Phases and topological structures of de Sitter lattice gravity”, Nucl. Phys. B, 299, 693–718, (1988). 2.3
[67] Caracciolo, S., and Pelissetto, A., ”From lattice gauge theory towards gravity”, in Damgaard, P.H. et al., ed., Probabilistic methods in quantum field theory and quantum gravity, 37–54, (Plenum Press, New York, 1990). 2.3 · Zbl 0726.53063
[68] Carfora, M., and Marzuoli, A., ”Entropy estimates for simplicial quantum gravity”, J. Geom. Phys., 16, 99–119, (1995). 4.3 · Zbl 0821.53054
[69] Caselle, M., D’Adda, A., and Magnea, L., ”Doubling of all matter fields coupled with gravity on a lattice”, Phys. Lett. B, 192, 411–414, (1987). 2.7
[70] Caselle, M., D’Adda, A., and Magnea, L., ”Lattice gravity and supergravity as spontaneously broken gauge theories of the (super)Poincaré grouprd,Phys. Lett. B, 192, 406–410, (1987). 2.7
[71] Caselle, M., D’Adda, A., and Magnea, L., ”Regge Calculus as a local theory of the Poincaré group”, Phys. Lett. B, 232, 457–461, (1989). 3.9, 3.14
[72] Catterall, S., ”Simulations of dynamically triangulated gravity”, Computer Phys. Commun., 87, 409–415, (1995). For a related online version see: S. Catterall, ”Simulations of dynamically triangulated gravity”, (May, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9405026. 4.4
[73] Catterall, S., ”Lattice quantum gravity: review and recent developments”, Nucl. Phys. Proc. Suppl., 47, 59–70, (1996). For a related online version see: S. Catterall, ”Lattice quantum gravity: review and recent developments”, (October, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9510008. 4.1
[74] Catterall, S., Kogut, J., and Renken, R., ”Is there an exponential bound in four-dimensional simplicial gravity?”, Phys. Rev. Lett., 72, 4062–4065, (1994). For a related online version see: S. Catterall, et al., ”On the absence of an exponential bound in four dimensional simplicial gravity”, (March, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9403019. 4.3 · Zbl 0973.83517
[75] Catterall, S., Kogut, J., and Renken, R., ”Phase structure of four-dimensional simplicial quantum gravity”, Phys. Lett. B, 328, 277–283, (1994). For a related online version see: S. Catterall, et al., ”Phase structure of four-dimensional simplicial quantum gravity”, (January, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9401026. 4.5, 4.6, 4.13 · Zbl 0973.83517
[76] Catterall, S., Kogut, J., and Renken, R., ”Simulations of four-dimensional simplicial quantum gravity”, Nucl. Phys. Proc. Suppl., 34, 733–735,(1994). 4.5, 4.6, 4.13 · Zbl 0973.83517
[77] Catterall, S., Kogut, J., and Renken, R., ”Singular structure in 4-d simplicial gravity”, Phys. Lett. B, 416, 274–280, (1998). For a related online version see: S. Catterall, et al., ”Singular structure in 4-d simplicial gravity”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9709007. 4.5, 4.6, 4.11
[78] Catterall, S., Kogut, J., Renken, R., and Thorleifsson, G., ”Baby universes in 4-d dynamical triangulation”, Phys. Lett. B, 366, 72–76, (1996). For a related online version see: S. Catterall, et al., ”Baby universes in 4-d dynamical triangulation”, (September, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9509004. 4.3
[79] Catterall, S., Thorleifsson, G., Kogut, J., and Renken, R., ”Singular vertices and the triangulation space of the d sphere”, Nucl. Phys. B, 468, 263–276, (1996). For a related online version see: S. Catterall, et al., ”Singular vertices and the triangulation space of the d sphere”, (December, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9512012. 4.4, 4.11 · Zbl 1002.83513
[80] Catterall, S., Thorleifsson, G., Kogut, J., and Renken, R., ”Simplicial gravity in dimension greater than two”, Nucl. Phys. Proc. Suppl., 53, 756–759, (1997). For a related online version see: S. Catterall, et al., ”Simplicial gravity in dimension greater than two”, (August, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9608042. 4.11
[81] Cheeger, J., Müller, W., and Schrader, R., ”Lattice gravity or Riemannian structure on piecewise linear spaces”, in Breitenlohner, P., and Duirr, H.P., eds., Unified theories of elementary particles, volume 160 of Lecture Notes in Physics, 176–188, (Springer, Berlin, 1982). 3.1, 3.1, 3.2, 3.13
[82] Cheeger, J., Müller, W., and Schrader, R., ”On the curvature of piecewise flat spaces”, Commun. Math. Phys., 92, 405–454, (1984). 3.2, 3.7 · Zbl 0559.53028
[83] Corichi, A., and Zapata, J.A., ”On diffeomorphism invariance for lattice theories”, Nucl. Phys. B, 493, 475–490, (1997). For a related online version see: A. Corichi, et al., ”On diffeomorphism invariance for lattice theories”, (November, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9611034. 2.14 · Zbl 0937.81051
[84] Das, A., Kaku, M., and Townsend, P.K., ”Lattice formulation of general relativity”, Phys. Lett. B, 81, 11–14, (1979). 2.4
[85] David, F., ”Simplicial quantum gravity and random lattices”, in Julia, B., and Zinn-Justin, J., eds., Gravitation and quantizations (Les Houches Summer School, Session LVII, 1992), 679–750, (Elsevier, Amsterdam, 1995). For a related online version see: F. David, ”Simplicial quantum gravity and random lattices”, (March, 1993), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9303127. 4.1
[86] de Bakker, B.V., ”Absence of barriers in dynamical triangulation”, Phys. Lett. B, 348, 35–38, (1995). For a related online version see: B.V.de Bakker, ”Absence of barriers in dynamical triangulation”, (November, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November1998, http://xxx.lanl.gov/abs/hep-lat/9411070. 4.4
[87] de Bakker, B.V., ”Further evidence that the transition of 4-d dynamical triangulation is first order”, Phys. Lett. B, 389, 238–242, (1996). For a related online version see: B.V. de Bakker, ”Further evidence that the transition of 4-d dynamical triangulation is first order”, (March, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9603024. 4.6
[88] de Bakker, B.V., and Smit, J., ”Euclidean gravity attracts”, Nucl. Phys. Proc. Suppl., 34, 739–741, (1994). For a related online version see: B.V. de Bakker, et al., ”Euclidean gravity attracts”, (November, 1993), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9311064. 4.13
[89] de Bakker, B.V., and Smit, J., ”Volume dependence of the phase boundary in 4-d dynamical riangulation”, Phys. Lett. B, 334, 304–308, (1994). For arelated online version see: B.V. de Bakker, et al., ”Volume dependence of the phase boundary in 4-d dynamical triangulation”, (May, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9405013. 4.3, 4.5, 4.8
[90] de Bakker, B.V., and Smit, J., ”Curvature and scaling in 4-d dynamical triangulation”, Nucl. Phys. B, 439, 239–258, (1995). For a relatedonline version see: B.V. de Bakker, et al., ”Curvature and scaling in 4-d dynamical triangulation”, (July, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9407014. 4.5, 4.6, 4.13
[91] de Bakker, B.V., and Smit, J., ”Two point functions in 4-d dynamical tri-angulation”, Nucl. Phys. B, 454, 343–356, (1995). For a related online version see: B.V. de Bakker, et al., ”Two point functions in 4-d dynamical tri-angulation”, (March, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9503004. 4.6, 4.14 · Zbl 0925.83007
[92] de Bakker, B.V., and Smit, J., ”Correlations and binding in 4-d dynamical triangulation”, Nucl. Phys. Proc. Suppl., 47, 613–616, (1996). For a related online version see: B.V. de Bakker, et al., ”Correlations and binding in 4-d dynamical triangulation”, (October, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9510041. 4.6, 4.13, 4.14
[93] de Bakker, B.V., and Smit, J., ”Gravitational binding in 4-d dynamical tri-angulation”, Nucl. Phys. B, 484, 476–494, (1997). For a related online version see: B.V. de Bakker, et al., ”Gravitational binding in 4-d dynamical triangulation”, (April, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9604023. 4.13 · Zbl 0925.83009
[94] De Pietri, R., and Rovelli, C., ”Geometry eigenvalues and scalar product from recoupling theory in loop quantum gravity”, Phys. Rev. D, 54, 2664–2690, (1996). For a related online version see: R. De Pietri, et al., ”Geometry eigenvalues and scalar product from recoupling theory in loop quantum gravity”, (February, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9602023. 2.15
[95] Egawa, H.S., Hotta, T., Izubuchi, T., Tsuda, N., and Yukawa, T., ”Scaling behaviour in 4-d simplicial quantum gravity”, Prog. Theor. Phys., 97, 539–552, (1997). For a related online version see: H.S. Egawa, et al., ”Scaling behaviour in 4-d simplicial quantum gravity”, (November, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9611028. 4.6
[96] Egawa, H.S., Hotta, T., Izubuchi, T., Tsuda, N., and Yukawa, T., ”Scaling structures in four-dimensional simplicial gravity”, Nucl. Phys. Proc. Suppl., 53, 760–762, (1997). For a related online version see: H.S. Egawa, et al., ”Scaling structures in four-dimensional simplicial gravity”, (August, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9608149. 4.6
[97] Egawa, H.S., Tsuda, N., and Yukawa, T., ”Common structures in 2-d, 3-d and 4-d simplicial quantum gravity”, Nucl. Phys. Proc. Suppl., 63, 736738, (1998). For a related online version see: H.S. Egawa, et al., ”Common structures in 2-d, 3-d and 4-d simplicial quantum gravity”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9709099. 4.4
[98] Egawa, H.S., Tsuda, N., and Yukawa, T., ”Common structures in simpli-cial quantum gravity”, preprint KEK-TH-561, 10pp, (1998). 4.4
[99] Ezawa, K., ”Multi-plaquette solutions for discretized Ashtekar gravityrd,Mod. Phys. Lett. A, 11, 2921–2932, (1996). 2.11, 2.13 · Zbl 1020.83540
[100] Ezawa, K., ”Nonperturbative solutions for canonical quantum gravity: an overview”, Phys. Rep., 286, 271–348, (1997). For a related online version see: K. Ezawa, ”Nonperturbative solutions for canonical quantum gravity: an overview”, (January, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9601050. 2.13
[101] Feinberg, G., Friedberg, R., Lee, T.D., and Ren, H.C., ”Lattice gravity near the continuum limit”, Nucl. Phys. B, 245, 343–368, (1984). 3.1, 3.2
[102] Fort, H., Gambini, R., and Pullin, J., ”Lattice knot theory and quantum gravity in the loop representation”, Phys. Rev. D, 56, 2127–2143, (1997). For a related online version see: H. Fort, et al., ”Lattice knot theory and quantum gravity in the loop representation”, (August, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9608033. 2.13
[103] Friedberg, R., and Lee, T.D., ”Derivation of Regge’s action from Einstein’s theory of general relativity”, Nucl. Phys. B, 242, 145–166, (1984). 3.2
[104] Fröhlich, J., ”Regge calculus and discretized gravitational functional integrals”, in Fröhlich, J., ed., Non-perturbative quantum field theory: Mathematical aspects and applications. Selected papers., 523–545, (World Scientific, Singapore, 1992). unpublished preprint IHES, 1981. 3.1, 3.1, 3.2,3.9, 3.14
[105] Gross, M., and Varsted, S., ”Elementary moves and ergodicity in d-dimensional simplicial quantum gravity”, Nucl. Phys. B, 378, 367–380,(1992). 4.4
[106] Hamber, H.W., ”Simplicial quantum gravity”, in Osterwalder, K., and Stora, R., eds., Critical phenomena, random systems, gauge theories (Les Houches Summer School, Session XLIII, 1984), 375–439, (Elsevier, Amsterdam, 1986). 3.1, 3.2, 3.3
[107] Hamber, H.W., ”Simplicial quantum gravity from two-dimensions to four-dimensions”, in Damgaard, P.H. et al., ed., Probabilistic methods in quantum field theory and quantum gravity, 77–87, (Plenum Press, New York,1990). 3.1
[108] Hamber, H.W., ”Critical behavior in simplicial quantum gravity”, Nucl. Phys. Proc. Suppl., 20, 728–732, (1991). 3.4 · Zbl 0957.83507
[109] Hamber, H.W., ”Simulations of discrete quantized gravity”, Int. J. Supercomput. Appl., 5, 84–97, (1991). 3.4
[110] Hamber, H.W., ”Fluctuations and correlations in simplicial quantum gravity”, Nucl. Phys. Proc. Suppl., 26, 581–583, (1992). 3.1 · Zbl 0957.83513
[111] Hamber, H.W., ”Phases of 4-d simplicial quantum gravity”, Phys. Rev. D, 45, 507–512, (1992). 3.4, 3.6, 3.15
[112] Hamber, H.W., ”Phases of simplicial quantum gravity”, Nucl. Phys. Proc. Suppl., 25, 150–175, (1992). 3.1 · Zbl 0957.81676
[113] Hamber, H.W., ”Phases of simplicial quantum gravity in four dimensions: estimates for the critical exponents”, Nucl. Phys. B, 400, 347–389, (1993).3.6, 3.15 · Zbl 0941.83509
[114] Hamber, H.W., ”Smooth and rough phases of quantized gravity”, Nucl. Phys. Proc. Suppl., 30, 751–755, (1993). 3.4 · Zbl 0990.83520
[115] Hamber, H.W., ”Invariant correlations in simplicial gravity”, Phys. Rev. D, 50, 3932–3941, (1994). For a related online version see: H.W. Hamber, ”Invariant correlations in simplicial gravity”, (November, 1993), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9311024. 3.8
[116] Hamber, H.W., ”Scalar fields coupled to four-dimensional lattice gravity”, in Carr, J., and Perrottet, M., eds., High energy physics: 1993 International Europhysics Conference, 211–213, (Editions Frontieres, Gif-sur-Yvette, 1994). For a related online version see: H.W. Hamber, ”Scalar fields coupled to four-dimensional lattice gravity”, (October, 1993), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9310152. 3.1, 3.11
[117] Hamber, H.W., and Williams, R.M., ”Higher derivative quantum gravity on a simplicial lattice”, Nucl. Phys. B, 248, 392–415, (1984). 3.2
[118] Hamber, H.W., and Williams, R.M., ”Nonperturbative simplicial quantum gravity”, Phys. Lett. B, 157, 368–374, (1985). 3.3
[119] Hamber, H.W., and Williams, R.M., ”Simplicial quantum gravity with higher derivative terms: formalism and numerical results in four-dimensions”, Nucl. Phys. B, 269, 712–734, (1986). 3.2, 3.2, 3.3
[120] Hamber, H.W., and Williams, R.M., ”Simplicial gravity coupled to scalar matter”, Nucl. Phys. B, 415, 463–496, (1994). For a related online version see: H.W. Hamber, et al., ”Simplicial gravity coupled to scalar matter”, (August, 1993), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9308099. 3.11 · Zbl 1007.83513
[121] Hamber, H.W., and Williams, R.M., ”Newtonian potential in quantum Regge gravity”, Nucl. Phys. B, 435, 361–398, (1995). For a related onlineversion see: H.W. Hamber, et al., ”Newtonian potential in quantum Regge gravity”, (June, 1994), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9406163. 3.12
[122] Hamber, H.W., and Williams, R.M., ”Gauge invariance in simplicial gravity”, Nucl. Phys. B, 487, 345–408, (1997). For a related online versionsee: H.W. Hamber, et al., ”Gauge invariance in simplicial gravity”, (July, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9607153. 3.13 · Zbl 0925.83011
[123] Hamber, H.W., and Williams, R.M., ”On the measure in simplicial gravity”, preprint DAMTP-97-75, 15pp, (1997). 3.13
[124] Hartle, J.B., ”Simplicial minisuperspace. I. General discussion”, J. Math. Phys., 26, 804–814, (1985). 3.1, 3.13, 3.14
[125] Hartle, J.B., ”Numerical quantum gravity”, in Sato, H., and Nakamura, T., eds., Proceedings of the 14th Yamada conference on gravitational collapse and relativity, 329–338, (World Scientific, Singapore, 1986). 3.14
[126] Hartle, J.B., ”Simplicial minisuperspace. II. Some classical solutions on simple triangulations”, J. Math. Phys., 27, 287–295, (1986). 3.14 · Zbl 0606.57010
[127] Hartle, J.B., ”Simplicial minisuperspace. III. Integration contours in a five-simplex model”, J. Math. Phys., 30, 452–460, (1989). 3.14
[128] Hartle, J.B., and Sorkin, R., ”Boundary terms in the action for the Regge calculus”, Gen. Relativ. Gravit., 13, 541–549, (1981). 3.1
[129] Hotta, T., Izubuchi, T., and Nishimura, J., ”Singular vertices in the strong coupling phase of four-dimensional simplicial gravity”, Prog. Theor. Phys., 94, 263–270, (1995). For a related online version see: T. Hotta, et al., ”Singular vertices in the strong coupling phase of four-dimensional simplicial gravity”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9709073. 4.5, 4.11
[130] Hotta, T., Izubuchi, T., and Nishimura, J., ”Singular vertices in the strong coupling phase of four-dimensional simplicial gravity”, Nucl. Phys. Proc. Suppl., 47, 609–612, (1996). For a related online version see: T. Hotta, et al., ”Singular vertices in the strong coupling phase of four-dimensional simplicial gravity”, (November, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9511023. 4.11
[131] Immirzi, G., ”Quantizing Regge calculus”, Class. Quantum Grav., 13, 2385–2394, (1996). For a related online version see: G. Immirzi, ”Quantizing Regge calculus”, (December, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9512040. 3.14 · Zbl 0860.53083
[132] Immirzi, G., ”Quantum gravity and Regge calculus”, Nucl. Phys. Proc. Suppl., 57, 65–72, (1997). For a related online version see: G. Immirzi, ”Quantum gravity and Regge calculus”, (January, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9701052. 3.14 · Zbl 0976.83504
[133] Isham, C.J., ”Quantum gravity”, in MacCallum, M.A.H., ed., Proceedings of the 11th International Conference on General Relativity and Gravitation, 99–127, (Cambridge University Press, Cambridge, 1987). 3.1
[134] Jevicki, A., and Ninomiya, M., ”Functional formulation of Regge gravityrd,Phys. Rev. D, 33, 1634–1637, (1986). 3.13
[135] Johnston, D.A., ”Gravity and random surfaces on the lattice: a review”, Nucl. Phys. Proc. Suppl., 53, 43–55, (1997). For a related online version see: D.A. Johnston, ”Gravity and random surfaces on the lattice: a review”, (July, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9607021. 4.1
[136] Jurkiewicz, J., ”Simplicial gravity and random surfaces”, Nucl. Phys. Proc. Suppl., 30, 108–121, (1993). 4.1 · Zbl 0990.83512
[137] Kaku, M., ”Lattices, gravity and supergravity”, in Hawking, S.W., and Rocek, M., eds., Superspace and supergravity, 503–515, (Cambridge University Press, Cambridge, 1981). 2.4
[138] Kaku, M., ”Strong-coupling approach to the quantization of conformal gravity”, Phys. Rev. D, 27, 2819–2834, (1983). 2.4
[139] Kaku, M., ”Generally covariant lattices, the random calculus, and the strong coupling approach to the renormalization of gravity”, in Batalin, I.A. et al., ed., Quantum field theory and quantum statistics, vol. 2, 141–163, (Hilger, Bristol, 1987). 2.4 · Zbl 0627.53069
[140] Kawamoto, N., and Nielsen, H.B., ”Lattice gauge gravity with fermionsrd,Phys. Rev. D, 43, 1150–1156, (1991). 3.9, 3.14
[141] Khatsymovsky, V., ”On the quantization of Regge links”, Phys. Lett. B, 323, 292–295, (1994). 3.14
[142] Kondo, K., ”Euclidean quantum gravity on a flat lattice”, Prog. Theor. Phys., 72, 841–852, (1984). 2.4 · Zbl 1074.83512
[143] Kristjansen, C.F., ”Higher derivative regularization in 4-d quantum gravity”, Nucl. Phys. Proc. Suppl., 30, 756–759, (1993). 4.8
[144] Krzywicki, A., ”Perspectives in lattice gravity”, Acta Phys. Pol. B, 27, 827–838, (1996). For a related online version see: A. Krzywicki, ”Perspectives in lattice gravity”, (December, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9512023. 4.1
[145] Leutwyler, H., ”Gravitational field: equivalence of Feynman quantization and canonical quantization”, Phys. Rev., 134, 1155–1182, (1964). 1 · Zbl 0129.41204
[146] Loll, R., ”Non-perturbative solutions for lattice quantum gravity”, Nucl. Phys. B, 444, 619–639, (1995). For a related online version see: R. Loll, ”Non-perturbative solutions for lattice quantum gravity”, (February, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998,http://xxx.lanl.gov/abs/gr-qc/9502006. 2.11, 2.13, 2.14 · Zbl 1006.83500
[147] Loll, R., ”The volume operator in discretized quantum gravity”, Phys. Rev. Lett., 75, 3048–3051, (1995). For a related online version see: R. Loll, ”The volume operator in discretized quantum gravity”, (June, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9506014. 2.15 · Zbl 1020.83541
[148] Loll, R., ”A real alternative to quantum gravity in loop space”, Phys. Rev. D, 54, 5381–5384, (1996). For a related online version see: R. Loll, ”A real alternative to quantum gravity in loop space”, (February, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9602041. 2.16
[149] Loll, R., ”Spectrum of the volume operator in quantum gravity”, Nucl. Phys. B, 460, 143–154, (1996). For a related online version see: R. Loll, ”Spectrum of the volume operator in quantum gravity”, (November, 1995), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9511030. 2.15 · Zbl 1004.83513
[150] Loll, R., ”Further results on geometric operators in quantum gravity”, Class. Quantum Grav., 14, 1725–1741, (1997). For a related online version see: R. Loll, ”Further results on geometric operators in quantum gravity”, (December, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9612068. 2.15 · Zbl 0878.58067
[151] Loll, R., ”Imposing det E > 0 in discrete quantum gravity”, Phys. Lett. B, 399, 227–232, (1997). For a related online version see: R. Loll, ”Imposing det E > 0 in discrete quantum gravity”, (March, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9703033. 2.15
[152] Loll, R., ”Latticing quantum gravity”, Nucl. Phys. Proc. Suppl., 57, 255258, (1997). For a related online version see: R. Loll, ”Latticing quantum gravity”, (January, 1997), [Online Los Alamos Archive Preprint]: cited on19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9701007. 2.15 · Zbl 0976.83503
[153] Loll, R., ”Quantizing canonical gravity in the real domain”, in Dremin, I.M., and Semikhatov, A.M., eds., Proceedings of the 2nd International Sakharov Conference on Physics, 280–283, (World Scientific, Singapore, 1997). For a related online version see: R. Loll, ”Quantizing canonical gravity in the real domain”, (January, 1997), [Online Los AlamosArchive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9701031. 2.16
[154] Loll, R., ”Simplifying the spectral analysis of the volume operator”, Nucl. Phys. B, 500, 405–420, (1997). For a related online version see: R. Loll,”Simplifying the spectral analysis of the volume operator”, (June, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9706038. 2.15 · Zbl 0935.83012
[155] Loll, R., ”Still on the way to quantizing gravity”, in Bassan, M. et al., ed., Proceedings of the 12th Italian Conference on General Relativity and Gravitational Physics, 280–283, (World Scientific, Singapore, 1997). For a related online version see: R. Loll, ”Still on the way to quantizing gravity”, (January, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9701032. 2.10
[156] Loll, R., ”On the diffeomorphism commutators of lattice quantum gravity”, Class. Quantum Grav., 15, 799–809, (1998). For a related online version see: R. Loll, ”On the diffeomorphism commutators of lattice quantum gravity”, (August, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9708025. 2.12 · Zbl 0941.83011
[157] MacDowell, S.W., and Mansouri, R., ”Unified geometric theory of gravity and supergravity”, Phys. Rev. Lett., 38, 739–742, (1977). 2.2
[158] Mäkelä, J., ”Phase space coordinates and the Hamiltonian constraint of Regge calculus”, Phys. Rev. D, 49, 2882–2896, (1994). 3.14
[159] Mannion, C.L.T., and Taylor, J.G., ”General relativity on a flat latticerd,Phys. Lett. B, 100, 261–266, (1981). 2.4
[160] Menotti, P., ”Nonperturbative quantum gravity”, Nucl. Phys. Proc. Suppl., 17, 29–38, (1990). 3.1
[161] Menotti, P., ”The role of diffeomorphisms in the integration over a finite dimensional space of geometries”, Nucl. Phys. Proc. Suppl., 63, 760–762, (1998). For a related online version see: P. Menotti, ”The role of diffeomorphisms in the integration over a finite dimensional space of geometries”, (September, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November 1998,http://xxx.lanl.gov/abs/hep-lat/9709101. 3.13
[162] Menotti, P., and Peirano, P.P., ”Diffeomorphism invariant measure for finite dimensional geometries”, Nucl. Phys. B, 488, 719–734, (1997). For a related online version see: P. Menotti, et al., ”Diffeomorphism invariant measure for finite dimensional geometries”, (July, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-th/9607071. 3.13 · Zbl 0925.58007
[163] Menotti, P., and Peirano, P.P., ”Functional integration for Regge gravity”, Nucl. Phys. Proc. Suppl., 57, 82–90, (1997). For a related online version see: P. Menotti, et al., ”Functional integration for Regge gravity”, (February, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November1998, http://xxx.lanl.gov/abs/gr-qc/9702020. 3.13 · Zbl 0976.83502
[164] Menotti, P., and Peirano, P.P., ”Functional integration on Regge geometries”, Nucl. Phys. Proc. Suppl., 53, 780–782, (1997). For a related onlineversion see: P. Menotti, et al., ”Functional integration on Regge geometries”, (July, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9607073. 3.13 · Zbl 0925.83008
[165] Menotti, P., and Pelissetto, A., ”Reflection positivity and graviton doubling in Euclidean lattice gravity”, Annals Phys., 170(2), 287–309, (1986). 2.5
[166] Menotti, P., and Pelissetto, A., ”Gauge invariance and functional integration measure in lattice gravity”, Nucl. Phys. B, 288, 813–831, (1987). 2.6
[167] Menotti, P., and Pelissetto, A., ”Poincaré, de Sitter, and conformal gravity on the lattice”, Phys. Rev. D, 35, 1194–1204, (1987). 2.5
[168] Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (Freeman, San Francisco, 1973). 3.1
[169] Myers, E., ”Unbounded action and’ density of states’, Class. Quantum Grav., 9, 405–411, (1992). 3.3
[170] Nabutovsky, A., and Ben-Av, R., ”Noncomputability arising in dynamical triangulation model of four-dimensional quantum gravity”, Commun. Math. Phys., 157, 93–98, (1993). 4.4 · Zbl 0785.53065
[171] Pachner, U., ”Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten”, Abh. Math. Sem. Univ. Hamburg, 57, 69–85, (1986). 4.4 · Zbl 0651.52007
[172] Pachner, U., ”P.L. homeomorphic manifolds are equivalent by elementary shellings”, Europ. J. Combinatorics, 12, 129–145, (1991). 4.4 · Zbl 0729.52003
[173] Rebbi, C., Lattice gauge theories and Monte-Carlo simulations, (World Scientific, Singapore, 1983). 2.1
[174] Regge, T., ”General Relativity without coordinates”, Nuovo Cimento A, 19, 558–571, (1961). 3.1, 3.2
[175] Reisenberger, M.P., ”A lattice worldsheet sum for 4-d Euclidean general relativity”, preprint Montevideo U., 51pp, (1997). 2.7
[176] Ren, H.-C., ”Matter fields in lattice gravity”, Nucl. Phys. B, 301, 661684, (1988). 3.2
[177] Renken, R.L., ”The renormalization group and dynamical triangulations”, Nucl. Phys. Proc. Suppl., 53, 783–785, (1997). For a related online version see: R.L. Renken, ”The renormalization group and dynamical triangula-tions”, (October, 1996), [Online Los Alamos Archive Preprint]: cited on19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9610037. 4.7, 4.12
[178] Renken, R.L., ”A renormalization group for dynamical triangulations in arbitrary dimensions”, Nucl. Phys. B, 485, 503–516, (1997). For a related online version see: R.L. Renken, ”A renormalization group for dynamical triangulations in arbitrary dimensions”, (July, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9607074. 4.7, 4.12
[179] Renteln, P., ”Some results of SU(2) spinorial lattice gravity”, Class. Quantum Grav., 7, 493–502, (1990). 2.12
[180] Renteln, P., and Smolin, L., ”A lattice approach to spinorial quantum gravity”, Class. Quantum Grav., 6, 275–294, (1989). 2.10 · Zbl 0678.53075
[181] Rocek, M., and Williams, R., ”Quantum Regge calculus”, Phys. Lett. B, 104, 31–37, (1981). 3.1, 3.1, 3.13
[182] Roček, M., and Williams, R., ”Introduction to quantum Regge calculus”, in Isham, C., and Duff, M., eds., Quantum structure of space and time, 105–116, (Cambridge University Press, Cambridge, 1982). 3.1
[183] Roček, M., and Williams, R., ”The quantization of Regge calculus”, Z. Phys. C, 21, 371–381, (1984). 3.1, 3.13
[184] Römer, H., and Zahringer, M., ”Functional integration and the diffeomorphism group in Euclidean lattice quantum gravity”, Class. Quantum Grav., 3, 897–910, (1986). 3.13, 4.1
[185] Smit, J., ”Remarks on the quantum gravity interpretation of 4d dynamical triangulation”, Nucl. Phys. Proc. Suppl., 53, 786–790, (1997). For a related online version see: J. Smit, ”Remarks on the quantum gravity interpretation of 4d dynamical triangulation”, (August, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/hep-lat/9608082. 4.13
[186] Smolin, L., ”Quantum gravity on a lattice”, Nucl. Phys. B, 148, 333–372,(1979). 2.2
[187] Sorkin, R., ”Time evolution problem in Regge calculus”, Phys. Rev. D, 12, 385–396, (1975). 3.1, 3.13
[188] Thiemann, T., ”Closed formula for the matrix elements of the volume operator in canonical quantum gravity”, J. Math. Phys., 39, 3347–3371, (1998). For a related online version see: T. Thiemann, ”Closed formulafor the matrix elements of the volume operator in canonical quantum gravity”, (June, 1996), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9606091. 2.15 · Zbl 1001.83024
[189] Tomboulis, E.T., ”Unitarity in higher-derivative quantum gravity”, Phys. Rev. Lett., 52, 1173–1176, (1984). 2.4
[190] Tuckey, P.A., and Williams, R.M., ”Regge calculus: a brief review and bibliography”, Class. Quantum Grav., 9, 1409–1422, (1992). 3.1, 3.14 · Zbl 0991.83532
[191] Varsted, S., ”Three-dimensional and four-dimensional simplicial quantum gravity”, Nucl. Phys. Proc. Suppl., 26, 578–580, (1992). 4.6 · Zbl 0957.83510
[192] Varsted, S., ”Four-dimensional quantum gravity by dynamical triangula-tions”, Nucl. Phys. B, 412, 406–414, (1994). 4.5, 4.6 · Zbl 1049.83513
[193] Weingarten, D., ”Euclidean quantum gravity on a lattice”, Nucl. Phys. B, 210, 229–245, (1982). 4.1
[194] West, P.C., ”A geometric gravity Lagrangian”, Phys. Lett. B, 76, 569–570,(1978). 2.4
[195] Wheater, J.F., ”Random surfaces and lattice quantum gravity”, Nucl. Phys. Proc. Suppl., 34, 15–28, (1994). 4.1
[196] Williams, R.M., ”Quantum Regge calculus in the Lorentzian domain and its Hamiltonian formulation”, Class. Quantum Grav., 3, 853–869, (1986). 3.1 · Zbl 0593.53050
[197] Williams, R.M., ”Discrete quantum gravity: the Regge calculus approach”, Int. J. Mod. Phys. B, 6, 2097–2108, (1992). 3.1 · Zbl 0798.53077
[198] Williams, R.M., ”Simplicial quantum gravity in four dimensions and invariants of discretized manifolds”, J. Math. Phys., 36, 6276–6287, (1995). 3.1 · Zbl 0847.57032
[199] Williams, R.M., ”Recent progress in Regge calculus”, Nucl. Phys. Proc. Suppl., 57, 73–81, (1997). For a related online version see: R.M. Williams, ”Recent progress in Regge calculus”, (February, 1997), [Online Los Alamos Archive Preprint]: cited on 19 November 1998, http://xxx.lanl.gov/abs/gr-qc/9702006. 3.13 · Zbl 0976.83506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.