×

zbMATH — the first resource for mathematics

Delay-dependent stability and \(H_\infty\) control: Constant and time-varying delays. (English) Zbl 1023.93032
Stability and control problems are considered for systems of the form \[ \dot x=A_0 x(t)+A_1 x(t-\tau) \] in conjunction with a quadratic Lyapunov functional. Several (four) transformations are used in order to obtain delay-dependent stability via linear matrix inequalities. The cases of time-varying and several delays are also considered.

MSC:
93C23 Control/observation systems governed by functional-differential equations
93B36 \(H^\infty\)-control
34K17 Transformation and reduction of functional-differential equations and systems, normal forms
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] BOYD S., Linear Matrix Inequality in Systems and Control Theory (1994) · Zbl 0816.93004 · doi:10.1137/1.9781611970777
[2] DOI: 10.1016/S0005-1098(99)00025-4 · Zbl 1041.93515 · doi:10.1016/S0005-1098(99)00025-4
[3] DOI: 10.1016/S0167-6911(01)00114-1 · Zbl 0974.93028 · doi:10.1016/S0167-6911(01)00114-1
[4] DOI: 10.1016/S0005-1098(01)00265-5 · Zbl 1014.93025 · doi:10.1016/S0005-1098(01)00265-5
[5] DOI: 10.1016/S0022-247X(02)00202-0 · Zbl 1032.34069 · doi:10.1016/S0022-247X(02)00202-0
[6] DOI: 10.1016/S0167-6911(97)00102-3 · Zbl 0902.93022 · doi:10.1016/S0167-6911(97)00102-3
[7] DOI: 10.1109/9.975503 · Zbl 1006.93055 · doi:10.1109/9.975503
[8] DOI: 10.1109/9.983353 · Zbl 1364.93209 · doi:10.1109/9.983353
[9] FRIDMAN E., IEEE Transactions on Automatic Control 47 pp 11– (2002)
[10] DOI: 10.1002/(SICI)1099-1239(199901)9:1<1::AID-RNC382>3.0.CO;2-S · Zbl 0923.93046 · doi:10.1002/(SICI)1099-1239(199901)9:1<1::AID-RNC382>3.0.CO;2-S
[11] DOI: 10.1109/9.847747 · Zbl 0986.34066 · doi:10.1109/9.847747
[12] HALE J., Introduction to Functional Differential Equations (1993) · Zbl 0787.34002
[13] DOI: 10.1016/S0005-1098(01)00250-3 · Zbl 1020.93016 · doi:10.1016/S0005-1098(01)00250-3
[14] DOI: 10.1016/S0167-6911(00)00003-7 · Zbl 0977.93072 · doi:10.1016/S0167-6911(00)00003-7
[15] DOI: 10.1109/9.920802 · Zbl 1008.93056 · doi:10.1109/9.920802
[16] DOI: 10.1080/002071799221172 · Zbl 0952.34057 · doi:10.1080/002071799221172
[17] DOI: 10.1109/9.763213 · Zbl 0964.34065 · doi:10.1109/9.763213
[18] DOI: 10.1016/S0005-1098(97)00082-4 · doi:10.1016/S0005-1098(97)00082-4
[19] DOI: 10.1006/jmaa.2000.6716 · Zbl 0973.34066 · doi:10.1006/jmaa.2000.6716
[20] MALEK-ZAVAREI M., Systems and Control Series 9, in: Time-Delay Systems. Analysis, Optimization and Applications (1987) · Zbl 0658.93001
[21] DOI: 10.1080/00207170110067116 · Zbl 1023.93055 · doi:10.1080/00207170110067116
[22] DOI: 10.1080/00207170010017400 · Zbl 1047.34088 · doi:10.1080/00207170010017400
[23] NICULESCU S.-I., Lecture Notes in Control and Information Sciences 269, in: Delay Effects on Stability (2001)
[24] NICULESCU, S.I., NETO, A. T., DION, J.M. and DUGARD, L. Delay-dependent stability of linear systems with delayed state: an LMI approach. Proceedings of the 34th IEEE Conference on Decision Control. pp.1495–1497.
[25] DOI: 10.1109/9.754838 · Zbl 0957.34069 · doi:10.1109/9.754838
[26] DOI: 10.1109/9.847719 · Zbl 0978.93026 · doi:10.1109/9.847719
[27] DOI: 10.1007/BFb0027481 · doi:10.1007/BFb0027481
[28] DOI: 10.1109/9.911428 · Zbl 1056.93598 · doi:10.1109/9.911428
[29] DOI: 10.1080/00207170210123833 · Zbl 1043.93058 · doi:10.1080/00207170210123833
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.