Prime spectrum of \(O_q(M_n(k))\): canonical image and normal separation. (Spectre premier de \(O_q(M_n(k))\): image canonique et séparation normale.) (French) Zbl 1024.16001

Let \(k\) be a field with a nonzero element \(q\) which is not a root of one and \(R={\mathcal O}_q(M_n(k))\) the coordinate algebra of quantum \(n\times n\)-matrices over \(k\). The algebra \(R\) is generated by the standard set of variables \(X_{ij}\), \(1\leq i,j\leq n\). Denote by \(\overline R\) the algebra of regular functions on quantum affine space of dimension \(n^2\). It is generated by the same set of generators \(X_{ij}\), \(1\leq i,j\leq n\), but the defining set of relations has the form \(X_{ij}X_{rs}=q^{-1}X_{it}X_{ij}\) if either \(i=r\), \(s<j\) or \(i>r\), \(j=s\) and also the form \(X_{ij}X_{rs}=X_{rs}X_{ij}\) if \(i\neq r\), \(j\neq s\).
It is shown that there exists a canonical injection \(\phi\colon\text{Spec}\;R\to\text{Spec}\;\overline R\) and \(\phi(\text{Spec }R)=\coprod_{w\in W}\text{Spec}_w\overline R\) in the sense of K. A. Brown and K. R. Goodearl [Trans. Am. Math. Soc. 348, No. 6, 2465–2502 (1996; Zbl 0857.16026)]. Moreover, the partition of \(\text{Spec }R\) into subsets \(\phi^{-1}(\text{Spec}_w\overline R)\) is an \(H\)-stratification, where \(H\) is the group of automorphisms of \(R\) under which every element \(X_{ij}\) is an eigenvector. If \(I,P\) are \(H\)-prime ideals and \(I>P\) then there exists \(T\in I\setminus P\) such that \(T\) is \(H\)-normal modulo \(P\). The algebra \(R\) is catenary and if \(R\in\text{Spec }R\) then \(\text{ht}(P)+\text{GKdim}(R/P)=n^2\). There are some other applications of the preceding results.


16D25 Ideals in associative algebras
16T20 Ring-theoretic aspects of quantum groups
16S36 Ordinary and skew polynomial rings and semigroup rings
20G42 Quantum groups (quantized function algebras) and their representations


Zbl 0857.16026
Full Text: DOI


[1] Artin, M.; Schelter, W.; Tate, J., Quantum deformations of GLn, Comm. pure appl. math., 64, 879-895, (1991) · Zbl 0753.17015
[2] Brown, K.A.; Goodearl, K.R., Prime spectra of quantum semisimple groups, Trans. amer. math. soc., 348, 2465-2502, (1996) · Zbl 0857.16026
[3] Cauchon, G., Effacement des dérivations et spectres premiers des algèbres quantiques, J. algebra, 260, 476-518, (2003) · Zbl 1017.16017
[4] Cauchon, G., Quotients premiers de Oq(mn(k)), J. algebra, 180, 530-545, (1996) · Zbl 0849.16028
[5] Goodearl, K.R., Prime spectra of quantized coordinate rings, (), 205-237 · Zbl 0984.16039
[6] Goodearl, K.R.; Lenagan, T.H., Catenarity in quantum algebras, J. pure appl. algebra, 111, 123-142, (1996) · Zbl 0864.16018
[7] Goodearl, K.R.; Letzter, E.S., The dixmier-Mœglin equivalence in quantum matrices and quantum Weyl algebras, Trans. amer. math. soc., 352, 3, 1381-1403, (2000) · Zbl 0978.16040
[8] Goodearl, K.R.; Letzter, E.S., Prime and primitive spectra of multiparameter quantum affine spaces, (), 39-58 · Zbl 0904.16001
[9] Gelfand, I.M.; Retakh, V.S., Determinants of matrices over non-commutative rings, Functional annal. appl., 25, 2, 91-102, (1991) · Zbl 0748.15005
[10] Goodearl, K.R.; Warfield, R.B., An introduction to noncommutative Noetherian rings, London math. soc. stud. texts, 16, (1989), Cambridge University Press Cambridge · Zbl 0679.16001
[11] Levasseur, T.; Stafford, J.T., The quantum coordinate ring of the special linear group, J. pure appl. algebra, 86, 181-186, (1996) · Zbl 0784.17023
[12] Manin, Yu.I., Quantum groups and noncommutative geometry, Publ. centre rech. math., (1988), Université de Montréal · Zbl 0724.17006
[13] Parshall, B.J.; Wang, J.P., Quantum linear groups, Mem. amer. math. soc., 439, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.