zbMATH — the first resource for mathematics

Geodesic structure of static charged black hole solutions in \(2+1\) dimensions. (English) Zbl 1024.83020
Summary: Geodesics structure of static charged black holes for dilaton gravity is constructed. In particular, circular and radial geodesics for charged and uncharged test particles are studied. Various possibilities are discussed for range of parameters for the black hole and the test particles. The orbits of the particles with angular momentum are presented.

83C80 Analogues of general relativity in lower dimensions
83C57 Black holes
83C22 Einstein-Maxwell equations
Full Text: DOI
[1] Bañados, M., Teitelboim, C., and Zanelli, J. · Zbl 0968.83514
[2] Bañados, M., Henneaux, M., Teitelboim, C., and Zanelli,
[3] Chan, K. C.
[4] Hirshmann, E. W. and Welch, D.
[5] Koikawa,
[6] Clement,
[7] Fernando, S. and Mansouri, F. (1998). C
[8] Chan, K. C. K. and Mann, R.
[9] Gibbons, G. W. and Madea,
[10] Garfinkle, D., Horowitz, G. T., and Strominger
[11] Mandal, G., Senguptha, A. M., and Wadia, S. R. (1 · Zbl 1021.81757
[12] Witten, · Zbl 0900.53037
[13] Horowitz, G. (1992). The Dark Side of String Theory: Black Holes and Black Strings, (hepth/9210119).
[14] Hassan, S. and Sen,
[15] Horowitz, G. and Welch, D. · Zbl 0972.83564
[16] Hyne, S. and Korea
[17] Sfetsos, K. and Skenderis, · Zbl 0920.53048
[18] Teo,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.