×

zbMATH — the first resource for mathematics

Generalized \(r\)-matrix structure and algebro-geometric solution for integrable system. (English) Zbl 1025.37034

MSC:
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q35 PDEs in connection with fluid mechanics
35Q53 KdV equations (Korteweg-de Vries equations)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1002/sapm1974534249 · Zbl 0408.35068
[2] DOI: 10.1016/0001-8708(80)90007-9 · Zbl 0455.58017
[3] DOI: 10.1016/0375-9601(90)90606-O
[4] Antonowicz M., J. Phys. 24 pp 5043– (1991)
[5] DOI: 10.1016/0370-2693(90)91198-K
[6] Cao C. W., Sci. China A (in Chinese) 32 pp 701– (1989)
[7] DOI: 10.1007/BF02108861 · Zbl 0705.35123
[8] DOI: 10.1016/0375-9601(94)90456-1 · Zbl 0961.35507
[9] DOI: 10.1007/BF02582998 · Zbl 0739.58027
[10] Cao C. W., Reports in Physics, Nonlinear Physics, eds. Chaohao Gu, Yishen Li and Guizhang Tu, Springer, Berlin pp 68– (1990)
[11] Cao C. W., J. Phys. 23 pp 4117– (1990)
[12] DOI: 10.1143/PTP.55.457 · Zbl 1109.37307
[13] DOI: 10.2307/2951834 · Zbl 0936.47028
[14] DOI: 10.1002/cpa.3160481103 · Zbl 0860.34005
[15] DOI: 10.2307/2946540 · Zbl 0771.35042
[16] DOI: 10.1070/RM1976v031n01ABEH001446 · Zbl 0346.35025
[17] DOI: 10.1016/0375-9601(92)90057-S
[18] Geng X. G., Physica 180 pp 241– (1992)
[19] DOI: 10.1103/PhysRevLett.19.1095
[20] Knörrer H., J. Rein. Ang. Math. 334 pp 69– (1982)
[21] DOI: 10.1007/BF01681429
[22] DOI: 10.1002/cpa.3160280105 · Zbl 0295.35004
[23] Levi D., J. Phys. 16 pp 2423– (1983)
[24] Li Y. S., Acta Math. Sin. 25 pp 464– (1982)
[25] DOI: 10.1007/BF01076037 · Zbl 0358.70004
[26] DOI: 10.1016/0001-8708(75)90151-6 · Zbl 0303.34019
[27] DOI: 10.1016/S0378-4371(97)00260-4
[28] DOI: 10.1016/0375-9601(94)90212-7 · Zbl 0959.35515
[29] DOI: 10.1016/0375-9601(94)90927-X · Zbl 0941.82521
[30] DOI: 10.1063/1.530882 · Zbl 0806.58046
[31] DOI: 10.1016/0375-9601(95)00056-9 · Zbl 1020.37535
[32] Ragnisco O., J. Phys. 28 pp 573– (1995)
[33] DOI: 10.1007/BF01391179 · Zbl 0403.58004
[34] Reyman A. G., Ency. Math. Sci. 16 pp 116–
[35] DOI: 10.1007/BF01076717 · Zbl 0535.58031
[36] DOI: 10.1143/PTPS.118.35
[37] DOI: 10.1016/0375-9601(77)90727-7
[38] Wadati M., J. Phys. Soc. Japan 32 (1972)
[39] DOI: 10.1143/JPSJ.47.1698 · Zbl 1334.35256
[40] DOI: 10.1143/JPSJ.52.394
[41] DOI: 10.1016/0375-9601(92)90778-K
[42] Zakharov V. E., Sov. Phys. JETP 34 pp 62– (1972)
[43] DOI: 10.1088/0253-6102/34/2/229
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.