×

zbMATH — the first resource for mathematics

Improvements of some projection methods for monotone nonlinear variational inequalities. (English) Zbl 1025.65036
The authors study the relationships between the Goldstein-Levitin-Polyak projection method (explicit method), the proximal method (implicit method) and then the extragradient method of G. M. Korpelevich [Ekonom. i Mat. Metody 12, 747-756 (1976; Zbl 0342.90044)] for nonlinear variational inequalities. The last method can be referred to as a prediction-correction method which uses the explicit method in the prediction step and the implicit method in the correction step. The authors improve it by using better prediction and correction steps. Numerical experiments show that the improvements are significant.

MSC:
65K10 Numerical optimization and variational techniques
49J40 Variational inequalities
49M15 Newton-type methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] GLOWINSKI, R., Numerical Methods for Nonlinear Variational Problems, Springer Verlag, New York, NY, 1984. · Zbl 0536.65054
[2] HARKER, P. T., and PANG, J. S., Finite-Dimensional Variational Inequality and Nonlinear Complementarity Problems: A Survey of Theory, Algorithms, and Applications, Mathematical Programming, Vol. 48, pp. 161-220, 1990. · Zbl 0734.90098 · doi:10.1007/BF01582255
[3] XIAO, B., and Harker, P. T., A Nonsmooth Newton Method for Variational Inequalities, I: Theory, Mathematical Programming, Vol. 65, pp. 151-194, 1994. · Zbl 0812.65048 · doi:10.1007/BF01581695
[4] XIAO, B., and HARKER, P. T., A Nonsmooth Newton Method for Variational Inequalities, II: Numerical Results, Mathematical Programming, Vol. 65, pp. 195-216, 1994. · Zbl 0812.65049 · doi:10.1007/BF01581696
[5] PANG, J. S., Inexact Newton Methods for the Nonlinear Complementarity Problem, Mathematical Programming, Vol. 36, pp. 54-71, 1986. · Zbl 0613.90097 · doi:10.1007/BF02591989
[6] PANG, J. S., and QI, L., Nonsmooth Equations: Motiû ation and Algorithms, SIAM Journal on Optimization, Vol. 3, pp. 443-465, 1993. · Zbl 0784.90082 · doi:10.1137/0803021
[7] MANGASARIAN, O. L., Solution of Symmetric Linear Complementarity Problems by Iterative Methods, Journal of Optimization Theory and Applications, Vol. 22, pp. 465-485, 1979. · Zbl 0341.65049 · doi:10.1007/BF01268170
[8] HE, B. S., A Projection and Contraction Method for a Class of Linear Complementarity Problems and Its Application in Convex Quadratic Programming, Applied Mathematics and Optimization, Vol. 25, pp. 247-262, 1992. · Zbl 0767.90086 · doi:10.1007/BF01182323
[9] HE, B. S., A New Method for a Class of Linear Variational Inequalities, Mathematical Programming, Vol. 66, pp. 137-144, 1994. · Zbl 0813.49009 · doi:10.1007/BF01581141
[10] HE, B. S., Solving a Class of Linear Projection Equations, Numerische Mathematik, Vol. 68, pp. 71-80, 1994. · Zbl 0822.65040 · doi:10.1007/s002110050048
[11] GOLDSTEIN, A. A., Convex Programming in Hilbert Space, Bulletin of the American Mathematical Society, Vol. 70, pp. 709-710, 1964. · Zbl 0142.17101 · doi:10.1090/S0002-9904-1964-11178-2
[12] LEVITIN, E. S., and POLYAK, B. T., Constrained Minimization Problems, USSR Computational Mathematics and Mathematical Physics, Vol. 6, pp. 1-50, 1966. · doi:10.1016/0041-5553(66)90114-5
[13] BERTSEKAS, D. P., and GAFNI, E. M., Projection Methods for Variational Inequalities with Application to the Traffic Assignment Problem, Mathematical Programming Study, Vol. 17, pp. 139-159, 1982. · Zbl 0478.90071 · doi:10.1007/BFb0120965
[14] KORPELEVICH, G. M., The Extragradient Method for Finding Saddle Points and Other Problems, Ekonomika i Matematicheskie Metody, Vol. 12, pp. 747-756, 1976. · Zbl 0342.90044
[15] KHOBOTOV, E. N., Modification of the Extragradient Method for Solving Variational Inequalities and Certain Optimization Problems, USSR Computational Mathematics and Mathematical Physics, Vol. 27, pp. 120-127, 1987. · Zbl 0665.90078 · doi:10.1016/0041-5553(87)90058-9
[16] HE, B. S., A Class of Projection and Contraction Methods for Monotone Variational Inequalities, Applied Mathematics and Optimization, Vol. 35, pp. 69-76, 1997. · Zbl 0865.90119 · doi:10.1007/BF02683320
[17] SUN, D. F., A Class of Iterative Methods for Solving Nonlinear Projection Equations, Journal of Optimization Theory and Applications, Vol. 91, pp. 123-140, 1996. · Zbl 0871.90091 · doi:10.1007/BF02192286
[18] ROCKAFELLAR, R. T., Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming, Mathematics of Operations Research, Vol. 1, pp. 97-116, 1976. · Zbl 0402.90076 · doi:10.1287/moor.1.2.97
[19] BERTSEKAS, D. P., and TSITSIKLIS, J. N., Parallel and Distributed Computation: Numerical Methods, Prentice-Hall, Englewood Cliffs, New Jersey, 1989. · Zbl 0743.65107
[20] HARKER, P. T., and PANG, J. S., A Damped Newton Method for the Linear Complementarity Problem, Lectures in Applied Mathematics Vol. 26, pp. 265-284, 1990. · Zbl 0699.65054
[21] MARCOTEE, P., and DUSSAULT, J. P., A Note on a Globally Convergent Newton Method for Solving Variational Inequalities, Operation Research Letters, Vol. 6, pp. 35-42, 1987. · Zbl 0623.65073 · doi:10.1016/0167-6377(87)90007-1
[22] TAJI, K., FUKUSHIMA, M., and IBARAKI, T., A Globally Convergent Newton Method for Solving Strongly Monotone Variational Inequalities, Mathematical Programming, Vol. 58, pp. 369-383, 1993. · Zbl 0792.49007 · doi:10.1007/BF01581276
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.