×

High-order non-reflecting boundary scheme for time-dependent waves. (English) Zbl 1025.65049

Summary: A new non-reflecting boundary scheme is proposed for time-dependent wave problems in unbounded domains. The linear time-dependent wave equation, with or without a dispersive term, is considered in a semi-infinite wave guide. The infinite domain is truncated via an artificial boundary \({\mathcal B}\) , and a high-order non-reflecting boundary condition (NRBC) is imposed on \({\mathcal B}\). Then the problem is solved numerically in the finite domain bounded by \({\mathcal B}\).
The new boundary scheme is based on a reformulation of the sequence of NRBCs proposed by R. L. Higdon [SIAM J. Numer. Anal. 31, 64-100 (1994; Zbl 0798.65113)]. In contrast to the original formulation of the Higdon conditions, the scheme constructed here does not involve any high derivatives beyond second order. This is made possible by introducing special auxiliary variables on \({\mathcal B}\). As a result, the new NRBCs can easily be used up to \(any\) desired order. They can be incorporated in a finite element or a finite difference scheme; in the present paper the latter is used. The parameters appearing in the NRBC are chosen automatically via a special procedure. Numerical examples concerning a semi-infinite wave guide are used to demonstrate the performance of the new method.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
78A50 Antennas, waveguides in optics and electromagnetic theory
78M20 Finite difference methods applied to problems in optics and electromagnetic theory

Citations:

Zbl 0798.65113
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Givoli, D, Numerical methods for problems in infinite domains, (1992), Elsevier Amsterdam · Zbl 0788.76001
[2] Givoli, D, Non-reflecting boundary conditions: a review, J. comput. phys., 94, 1-29, (1991) · Zbl 0731.65109
[3] Tsynkov, S.V, Numerical solution of problems on unbounded domains, a review, Appl. numer. math., 27, 465-532, (1998) · Zbl 0939.76077
[4] Givoli, D, Exact representations on artificial interfaces and applications in mechanics, Appl. mech. rev., 52, 333-349, (1999)
[5] Hagstrom, T, Radiation boundary conditions for the numerical simulation of waves, Acta numer., 8, 47-106, (1999) · Zbl 0940.65108
[6] Engquist, B; Majda, A, Radiation boundary conditions for acoustic and elastic calculations, Commun. pure appl. math., 32, 313-357, (1979) · Zbl 0387.76070
[7] Bayliss, A; Turkel, E, Radiation boundary conditions for wave-like equations, Commun. pure appl. math., 33, 707-725, (1980) · Zbl 0438.35043
[8] Keller, J.B; Givoli, D, Exact non-reflecting boundary conditions, J. comput. phys., 82, 172-192, (1989) · Zbl 0671.65094
[9] Givoli, D; Keller, J.B, Non-reflecting boundary conditions for elastic waves, Wave motion, 12, 261-279, (1990) · Zbl 0708.73012
[10] Ryaben’kii, V.S; Tsynkov, S.V, Artificial boundary conditions for the numerical solution of external viscous flow problems, SIAM J. numer. anal., 32, 1355-1389, (1995) · Zbl 0835.76078
[11] Tsynkov, S.V; Turkel, E; Abarbanel, S, External flow computations using global boundary conditions, Aiaa j., 34, 700-706, (1996)
[12] Bérenger, J.P, A perfectly matched layer for the absorption of electromagnetic waves, J. comput. phys., 114, 185-200, (1994) · Zbl 0814.65129
[13] Collino, F, High order absorbing boundary conditions for wave propagation models. straight line boundary and corner cases, (), 161-171 · Zbl 0814.35065
[14] Grote, M.J; Keller, J.B, Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. appl. math., 55, 280-297, (1995) · Zbl 0817.35049
[15] Grote, M.J; Keller, J.B, Nonreflecting boundary conditions for time dependent scattering, J. comput. phys., 127, 52-65, (1996) · Zbl 0860.65080
[16] Grote, M.J; Keller, J.B, Nonreflecting boundary conditions for elastic waves, SIAM J. appl. math., 60, 803-819, (2000) · Zbl 0977.35075
[17] Sofronov, I.L, Conditions for complete transparency on the sphere for the three-dimensional wave equation, Russian acad. dci. dokl. math., 46, 397-401, (1993) · Zbl 0799.35141
[18] Hagstrom, T; Hariharan, S.I, Progressive wave expansions and open boundary problems, in computational wave propagation, (), 23-43 · Zbl 0862.65057
[19] Hagstrom, T; Hariharan, S.I, A formulation of asymptotic and exact boundary conditions using local operators, Appl. numer. math., 27, 403-416, (1998) · Zbl 0924.35167
[20] Guddati, M.N; Tassoulas, J.L, Continued-fraction absorbing boundary conditions for the wave equation, J. comput. acoust., 8, 139-156, (2000) · Zbl 1360.76136
[21] Givoli, D, High-order non-reflecting boundary conditions without high-order derivatives, J. comput. phys., 170, 849-870, (2001) · Zbl 0984.65115
[22] Givoli, D; Patlashenko, I, An optimal high-order non-reflecting finite element scheme for wave scattering problems, Int. J. numer. meth. eng., 53, 2389-2411, (2002) · Zbl 1007.65093
[23] Turkel, E; Yefet, A, Absorbing PML boundary layers for wave-like equations, Appl. numer. math., 27, 533-557, (1998) · Zbl 0933.35188
[24] Collino, F; Monk, P, The perfectly matched layer in curvilinear coordinates, SIAM J. sci. comp., 19, 2061-2090, (1998) · Zbl 0940.78011
[25] Ting, L; Miksis, M.J, Exact boundary conditions for scattering problems, J. acoust. soc. am., 80, 1825-1827, (1986)
[26] Givoli, D; Cohen, D, Non-reflecting boundary conditions based on Kirchhoff-type formulae, J. comput. phys., 117, 102-113, (1995) · Zbl 0861.65071
[27] Safjan, A.J, Highly accurate non-reflecting boundary conditions for finite element simulations of transient acoustics problems, Comput. meth. appl. mech. eng., 152, 175-193, (1998) · Zbl 0963.76053
[28] Givoli, D, A spatially exact non-reflecting boundary condition for time dependent problems, Comput. meth. appl. mech. eng., 95, 97-113, (1992) · Zbl 0775.65006
[29] Patlashenko, I; Givoli, D; Barbone, P, Time-stepping schemes for systems of Volterra integra-differential equations, Comput. meth. appl. mech. eng., 190, 5691-5718, (2001) · Zbl 0985.65166
[30] Thompson, L.L; Pinsky, P.M, Space – time finite element method for structural acoustics in infinite domains. part 2: exact time-dependent non-reflecting boundary conditions, Comput. meth. appl. mech. eng., 132, 229-258, (1996) · Zbl 0918.73107
[31] Alpert, B; Greengard, L; Hagstrom, T, Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation, SIAM J. numer. anal., 37, 1138-1164, (2000) · Zbl 0963.65104
[32] Alpert, B; Greengard, L; Hagstrom, T, An integral evolution formula for the wave equation, J. comput. phys., 162, 536-543, (2000) · Zbl 0966.65062
[33] Thompson, L.L; Huan, R, Finite element formulation of exact nonreflecting boundary conditions for the time-dependent wave equation, Int. J. numer. meth. eng., 45, 1607-1630, (1999) · Zbl 0981.76058
[34] Huan, R; Thompson, L.L, Accurate radiation boundary conditions for the time-dependent wave equation on unbounded domains, Int. J. numer. meth. eng., 47, 1569-1603, (2000) · Zbl 0965.65120
[35] Krenk, S, Unified formulation of radiation conditions for the wave equation, Int. J. numer. meth. eng., 53, 275-295, (2002) · Zbl 0995.65102
[36] J. Goodrich, T. Hagstrom, High order implementations of accurate boundary conditions, in: Proceedings of the 5th AIAA/CEAS Aeroacoustics Conference, Seattle, WA, AIAA, 1999
[37] I.M. Navon, B. Neta, M.Y. Hussaini, A perfectly matched layer formulation for the nonlinear shallow water equations models: the split equation approach (to appear)
[38] Givoli, D, Recent advances in the dtn finite element method for unbounded domains, Arch. comput. meth. eng., 6, 71-116, (1999)
[39] Pedlosky, J, Geophysical fluid dynamics, (1987), Springer New York · Zbl 0713.76005
[40] Higdon, R.L, Radiation boundary conditions for dispersive waves, SIAM J. numer. anal., 31, 64-100, (1994) · Zbl 0798.65113
[41] Higdon, R.L, Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation, Math. comput., 47, 437-459, (1986) · Zbl 0609.35052
[42] Higdon, R.L, Numerical absorbing boundary conditions for the wave equation, Math. comput., 49, 65-90, (1987) · Zbl 0654.65083
[43] Higdon, R.L, Radiation boundary conditions for elastic wave propagation, SIAM J. numer. anal., 27, 831-870, (1990) · Zbl 0718.35058
[44] Higdon, R.L, Absorbing boundary conditions for elastic waves, Geophysics, 56, 231-241, (1991)
[45] Higdon, R.L, Absorbing boundary conditions for acoustic and elastic waves in stratified media, J. comput. phys., 101, 386-418, (1992) · Zbl 0800.76402
[46] D. Givoli, B. Neta, High-order non-reflecting boundary conditions for dispersive waves, Wave Motion (in press) · Zbl 1163.74357
[47] O. Vacus, Mathematical analysis of absorbing boundary conditions for the wave equation: the corner problem, preprint · Zbl 1112.78010
[48] Pearson, R.A, Consistent boundary conditions for the numerical models of systems that admit dispersive waves, J. atmos. sci., 31, 1418-1489, (1974)
[49] Orlanski, I, A simple boundary condition for unbounded hyperbolic flows, J. comput. phys., 21, 251-269, (1976) · Zbl 0403.76040
[50] Raymond, W.H; Kuo, H.L, A radiation boundary condition for multi-dimensional flows, Q. J. R. meteorol. soc., 110, 535-551, (1984)
[51] Miller, M.J; Thorpe, A.J, Radiation conditions for the lateral boundaries of limited-area numerical models, Q. J. R. meteorol. soc., 107, 615-628, (1981)
[52] Klemp, J.B; Lilly, D.K, Numerical simulation of hydrostatic mountain waves, J. atmos. sci., 35, 78-107, (1978)
[53] Wurtele, M; Paegle, J; Sielecki, A, The use of open boundary conditions with the storm – surge equations, Mon. weather rev., 99, 537-544, (1971)
[54] Hodur, R.M, The naval research laboratory’s coupled Ocean/atmosphere mesoscale prediction system (COAMPS), Mon. weather rev., 125, 1414-1430, (1997)
[55] Ren, X; Wang, K.H; Jin, K.R, Open boundary conditions for obliquely propagating nonlinear shallow-water waves in a wave channel, Comput. fluids, 26, 269-278, (1997) · Zbl 0884.76054
[56] Jensen, T.G, Open boundary conditions in stratified Ocean models, J. marine syst., 16, 297-322, (1998)
[57] Oliveira, F.S.B.F, Improvement on open boundaries on a time dependent numerical model of wave propagation in the nearshore region, Ocean eng., 28, 95-115, (2000)
[58] Tannehill, J.C; Anderson, D.A; Pletcher, R.H, Computational fluid mechanics and heat transfer, (1997), Taylor & Francis Washington DC
[59] Sommeijer, B.P; van der Houwen, P.J; Neta, B, Symmetric linear multistep methods for second order differential equations with periodic solutions, Appl. numer. math., 2, 69-77, (1986) · Zbl 0596.65046
[60] D. Givoli, B. Neta, High-order Higdon non-reflecting boundary conditions for the shallow water equations, Report NPS-MA-02-001, Naval Postgraduate School, Monterey, CA, 2002
[61] Durran, D.R, Numerical methods for wave equations in geophysical fluid dynamics, (1999), Springer New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.