Regularity properties of viscosity solutions of a non-Hörmander degenerate equation. (English) Zbl 1026.35024

In the paper the authors obtain regularity results of viscosity solutions of the following nonlinear degenerate equation \[ {\L}u=f \quad \text{in } S_T \equiv \mathbb{R}^2 \times ]0,T[ \] where \(T\) is sufficiently small and the nonlinear operator \({\L}\) is defined by \[ {\L}u= \partial_{xx}u+ u \partial_y u-\partial_t u \] where \(z=(x,y,t)\) is the generic point belongs to \(\mathbb{R}^3.\) The authors, using geometric properties of some Hörmander operator naturally associated to \({\L},\) prove that the viscosity solutions of \({\L}u=f\) are classical solutions.
Also, there are established some properties of \(u_x\) that, with a propagation principle, allows the authors to obtain a sufficient condition to have different from zero the partial derivative \(\partial_x u(z)\), for all \(z \in \Omega\), where \(\Omega\) is an open bounded set in \(\mathbb{R}^3.\)


35D10 Regularity of generalized solutions of PDE (MSC2000)
35K55 Nonlinear parabolic equations
35B65 Smoothness and regularity of solutions to PDEs
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
Full Text: DOI


[1] {\scF. Antonelli, E. Barucci, M.E. Mancino}, Backward-forward stochastic differential utility: existence, optimal consumption and equilibrium analysis, to appear · Zbl 0988.91039
[2] {\scF. Antonelli, A. Pascucci}, On the viscosity solutions of a stochastic differential utility problem, to appear
[3] Bony, M., Principe de maximum, inégalité de Harnack et unicité du problème de Cauchy pour LES opérateurs elliptiques dégénérés, Ann. inst. Fourier, Grenoble, 19, 1, 277-304, (1969) · Zbl 0176.09703
[4] Bramanti, M.; Brandolini, L., Lp estimates for uniformly hypoelliptic operators with discontinuous coefficients on homogeneous groups, Trans. amer. math. soc., 352, 2, 781-822, (2000) · Zbl 0935.35037
[5] Bramanti, M.; Cerutti, M.C.; Manfredini, M., Lp estimates for some ultraparabolic operators with discontinuous coefficients, J. math. anal. appl., 200, 2, 332-354, (1996) · Zbl 0922.47039
[6] Caffarelli, L.A.; Cabre, X., Fully nonlinear elliptic equations, Amer. math. soc. colloq. publ., 43, (1991), American Mathematical Society Providence, RI
[7] {\scP.M. Cannarsa, A. Cutrı́}, Private communication
[8] Chiarenza, F.; Frasca, M.; Longo, P., Interior W2,p estimates for non-divergence elliptic equations with discontinuous coefficients, Ricerche mat., 40, 1, 149-168, (1991) · Zbl 0772.35017
[9] Citti, G., C∞ regularity of solutions of a quasilinear equation related to the Levi operator, Ann. scuola norm. sup. Pisa cl. sci., ser. IV, XXIII, 483-529, (1996) · Zbl 0872.35018
[10] Citti, G., Proprietà di regolarità dell’equazione di Levi che non dipendono da ipotesi di curvatura, Sem. anal. mat. dip. mat. univ. Bologna, A.A., (2000), Tecnoprint Bologna
[11] {\scG. Citti, E. Lanconelli, A. Montanari}, Smoothness of Lipschitz continuous graphs, with non vanishing Levi curvature, to appear on Acta Math · Zbl 1030.35084
[12] Citti, G.; Pascucci, A.; Polidoro, S., On the regularity of solutions to a nonlinear ultraparabolic equation arising in mathematical finance, Differential integral equations, 14, 6, 701-738, (2001) · Zbl 1013.35046
[13] Crandall, M.G.; Ishii, H.; Lions, P.L., User’s guide to viscosity solutions of second order partial differential equations, Bull. amer. math soc. (N.S.), 27, 1-67, (1992) · Zbl 0755.35015
[14] Escobedo, M.; Vazquez, J.L.; Zuazua, E., Entropy solutions for diffusion-convection equations with partial diffusivity, Trans. amer. math. soc., 343, 2, 829-842, (1994) · Zbl 0803.35084
[15] Fefferman, C.L.; Kohn, J.J.; Machedon, M., Hölder estimates on CR manifolds with a diagonalizable Levi form, Adv. math., 84, 1, 1-90, (1990) · Zbl 0763.32004
[16] Fleming, W.H.; Soner, H.M., Controlled Markov processes and viscosity solutions, Appl. math., 25, (1993), Springer-Verlag · Zbl 0773.60070
[17] Folland, G.B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. mat., 13, 161-207, (1975) · Zbl 0312.35026
[18] Franchi, B.; Lanconelli, E., Hölder regularity theorem for a class of linear non-uniformly elliptic operators with measurable coefficients, Ann. scuola norm. sup. Pisa cl. sci., ser. IV, 10, 523-541, (1983) · Zbl 0552.35032
[19] Folland, G.B.; Stein, E.M., Estimates for the \(∂̄b\) complex and analysis on the Heisenberg group, Comm. pure appl. math., 20, 429-522, (1974) · Zbl 0293.35012
[20] Hörmander, L., Hypoelliptic second order differential equations, Acta math., 119, 147-171, (1967) · Zbl 0156.10701
[21] Jerison, D.S.; Sanchez-Calle, A., Estimates for the heat kernel for a sum of squares of vector fields, Indiana univ. math. J., 35, 835-854, (1986) · Zbl 0639.58026
[22] Krylov, N.V., Hölder continuity and Lp estimates for elliptic equations under general Hörmander’s condition, Topol. methods nonlinear anal., 9, 2, 249-258, (1997) · Zbl 0892.35066
[23] Lunardi, A., Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \(R\^{}\{n\}\), Ann. scuola norm. sup. Pisa, ser. IV, XXIV, 133-164, (1997) · Zbl 0887.35062
[24] Ladyženskaja, O.A.; Solonnikov, V.A.; Ural’ceva, N.N., Linear and quasilinear equations of parabolic type, Trasl. math. monographs, 23, (1968), American Mathematical Society Providence, RI
[25] Lanconelli, E.; Polidoro, S., On a class of hypoelliptic evolution operators, Rend. sem. mat. Pol. Torino, 51, 4, 137-171, (1993)
[26] Manfredini, M., The Dirichlet problem for a class of ultraparabolic equations, Adv. differential equations, 2, 5, 831-866, (1996) · Zbl 1023.35518
[27] Nagel, A.; Stein, E.M.; Wainger, S., Balls and metrics defined by vector fields I: basic properties, Acta math., 155, 103-147, (1985) · Zbl 0578.32044
[28] Polidoro, S., On a class of ultraparabolic operators of kolmogorov – fokker – planck type, Matematiche (Catania), 49, 53-105, (1994) · Zbl 0845.35059
[29] Rothschild, L.P.; Stein, E.M., Hypoelliptic differential operators on nilpotent groups, Acta math., 137, 247-320, (1977) · Zbl 0346.35030
[30] Sánchez-Calle, A., Fundamental solutions and geometry of the sum of squares of vector fields, Invent. math., 78, 143-160, (1984) · Zbl 0582.58004
[31] Vol’pert, A.I.; Hudjaev, S.I., Cauchy’s problem for degenerate second order quasilinear parabolic equations, Math. USSR sb., 7, 3, 365-387, (1969) · Zbl 0191.11603
[32] Wang, L., On the regularity theory of fully nonlinear parabolic equations I, Comm. pure appl. math., 45, 1, 27-76, (1992) · Zbl 0832.35025
[33] Wang, L., On the regularity theory of fully nonlinear parabolic equations II, Comm. pure appl. math., 45, 2, 141-178, (1992) · Zbl 0774.35042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.