×

Scattering matrices and scattering geodesics of locally symmetric spaces. (English) Zbl 1026.53026

The authors study \( \mathbb{Q}\)-rank locally symmetric spaces and the scattering matrices on these spaces. The scattering matrices measure the density of the continuous spectrum and their analytic properties are important. Scattering geodesics are the geodesics that move to infinity in both directions. They are distance minimizing near both infinities. The sojourn time of a scattering geodesic can be described as the time this geodesic spends in a fixed compact region. The authors describe the singularities of the Fourier transformations, i.e. the frequencies of oscillation (with respect to the energy parameter) of the scattering matrices of a locally symmetric space. They prove that the singularities occur at sojourn time of scattering geodesics. A corresponding quantum property of this classical statement is given as well.
It is known [S. Zelditch, Commun. Partial Differ. Equations 17, 221-260 (1992; Zbl 0749.58062)] that the real part of the scattering matrix can be given as an integral of the wave group over horocycles. This result makes it easier to understand the singularities of the Fourier transformation of the real part of the scattering matrix. Ji and Zworski realize that, instead of constructing the wave operators or studying Einstein series explicitly, the singularities of the scattering matrix itself can be obtained that way too.
The paper contributes a lot to a better understanding of the geometry and the spectral theory of locally symmetric spaces as well as of the scattering matrices and their frequencies of oscillation.

MSC:

53C35 Differential geometry of symmetric spaces

Citations:

Zbl 0749.58062
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] Borel A. , Introduction aux groupes arithmétiques , Hermann , Paris , 1969 . MR 244260 | Zbl 0186.33202 · Zbl 0186.33202
[2] Borel A ., Linear algebraic groups, in: Proc. of Symp. in Pure Math ., Vol. 9 , pp. 3-19. Zbl 0205.50503 · Zbl 0205.50503
[3] Borel A. Reduction theory for arithmetic subgroups, in: Proc. of Symp. in Pure Math ., Vol. 9 , pp. 20-25. Zbl 0213.47201 · Zbl 0213.47201
[4] Borel A. , Serre J.-P. , Corners and arithmetic groups , Comment. Math. Helv. 48 ( 1973 ) 436 - 491 . MR 387495 | Zbl 0274.22011 · Zbl 0274.22011 · doi:10.1007/BF02566134
[5] Borel A. , Tits J. , Groupes réductifs , I.H.E.S 27 ( 1965 ) 55 - 150 . Numdam | MR 207712 | Zbl 0145.17402 · Zbl 0145.17402 · doi:10.1007/BF02684375
[6] Duistermaat J. , Guillemin V. , The spectrum of positive elliptic operators and periodic bicharacteristics , Inv. Math. 29 ( 1975 ) 39 - 79 . MR 405514 | Zbl 0307.35071 · Zbl 0307.35071 · doi:10.1007/BF01405172
[7] Freitag E. , Hilbert Modular Forms , Springer-Verlag , 1990 . MR 1050763 | Zbl 0702.11029 · Zbl 0702.11029
[8] Gelfand I.M. , Piatetski-Shapiro I.I. , Unitary representations in homogeneous spaces with discrete stationary groups , Soviet Math. Dokl. 3 ( 1962 ) 1528 - 1531 . Zbl 0119.27002 · Zbl 0119.27002
[9] Guillemin V. , Sojourn times and asymptotic properties of the scattering matrix , Publ. RIMS, Kyoto Univ. 12 ( 1977 ) 69 - 88 , (Suppl.). Article | MR 448453 | Zbl 0381.35064 · Zbl 0381.35064 · doi:10.2977/prims/1195196598
[10] Guillemin V. , Notes on scattering theory , MIT , 1976 , unpublished notes. · Zbl 0353.53027
[11] Harish-Chandra , Automorphic Forms on Semisimple Lie Groups , Lect. Notes in Math. , 62 , 1968 . Zbl 0186.04702 · Zbl 0186.04702
[12] Hörmander L. , Fourier integral operators I , Acta Math. 127 ( 1971 ) 79 - 183 . MR 388463 | Zbl 0212.46601 · Zbl 0212.46601 · doi:10.1007/BF02392052
[13] Hörmander L. , The Analysis of Linear Partial Differential Operators, Vol. I , Springer-Verlag , Berlin , 1983 .
[14] Hörmander L. , The Analysis of Linear Partial Differential Operators, Vol. IV , Springer-Verlag , Berlin , 1985 . Zbl 0601.35001 · Zbl 0601.35001
[15] Ji L. , The Weyl upper bound on the discrete spectrum of locally symmetric spaces , J.D.G. 51 ( 1999 ) 97 - 147 . MR 1703605 | Zbl 1036.58028 · Zbl 1036.58028
[16] Ji L. , McPherson R. , Geometry of compactifications of locally symmetric spaces , preprint , 1997 .
[17] Kuznecov V.N. , Petersson’s conjecture for cusp forms of weight 0 and Linnik’s conjecture: sums of Kloosterman sums , Math. USSR Sbornik 39 ( 1981 ). Zbl 0461.10017 · Zbl 0461.10017 · doi:10.1070/SM1981v039n03ABEH001518
[18] Langlands R. , On the Functional Equations Satisfied by Eisenstein Series , Lect. Notes in Math. , 544 , 1976 . MR 579181 | Zbl 0332.10018 · Zbl 0332.10018 · doi:10.1007/BFb0079929
[19] Langlands R. , Eisenstein series, the trace formula, and the modern theory of automorphic forms , in: Number Theory, Trace Formula and Discrete Groups , Academic Press , Boston, MA , 1989 , pp. 125 - 155 . MR 993313 | Zbl 0671.10025 · Zbl 0671.10025
[20] Lax P. , Phillips R. , Scattering Theory for Automorphic Functions , Princeton University Press , 1978 . Zbl 0362.10022 · Zbl 0362.10022
[21] Müller W. , The trace class conjecture in the theory of automorphic forms , Ann. of Math. 130 ( 1989 ) 473 - 529 . MR 1025165 | Zbl 0701.11019 · Zbl 0701.11019 · doi:10.2307/1971453
[22] Petkov V. , Stoyanov L. , Geometry of Reflecting Rays and Inverse Spectral Problems , Wiley , 1992 . MR 1172998 | Zbl 0761.35077 · Zbl 0761.35077
[23] Saper L. , Tilings and finite energy retractions of locally symmetric spaces , Comment. Math. Helv. 72 ( 1997 ) 167 - 202 . MR 1470087 | Zbl 0890.22003 · Zbl 0890.22003 · doi:10.1007/PL00000369
[24] Selberg A. , On discontinuous groups in higher dimensional symmetric spaces , in: Contributions to Function Theory , Tata Inst. of Fund. Res , Bombay , 1960 . MR 130324 | Zbl 0201.36603 · Zbl 0201.36603
[25] Zelditch S. , Kuznecov sum formulæ and Szegö limit formulæ on manifolds , Comm. P.D.E. 17 ( 1992 ) 221 - 260 . MR 1151262 | Zbl 0749.58062 · Zbl 0749.58062 · doi:10.1080/03605309208820840
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.