×

zbMATH — the first resource for mathematics

Properties of solutions in \(2+1\) dimensions. (English) Zbl 1026.83044
Summary: We solve the Einstein equations for the 2 + 1 dimensions with and without scalar fields. We calculate the entropy, Hawking temperature and the emission probabilities for these cases. We also compute the Newman-Penrose coefficients for different solutions and compare them.

MSC:
83C80 Analogues of general relativity in lower dimensions
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdalla, E., Abdalla, M. C. B., and Rothe, K. D. (1991). Dimensional Quantum Field Theory (World Scientific, Singapore) · Zbl 0983.81037
[2] Zinn-Justin, J. (1993). Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford, United Kingdom. · Zbl 0865.00014
[3] Banados, M., Teitelboim, C., and Zanelli, J. · Zbl 0968.83514 · doi:10.1103/PhysRevLett.69.1849
[4] Banados, M., Henneaux, M., Teitelboim, C., and Zanelli, · doi:10.1103/PhysRevD.48.1506
[5] Deser, S., Jackiw, R., and Templeton, · doi:10.1016/0003-4916(82)90164-6
[6] Deser, S., Jackiw, R., and ’t Hooft, · doi:10.1016/0003-4916(84)90085-X
[7] Deser, S., and Jackiw, · doi:10.1016/0003-4916(84)90025-3
[8] Clément, G. (199 · doi:10.1088/0264-9381/10/9/030
[9] Kamara, M. and Koikawa,
[10] Cataldo, M., and Salgado, · Zbl 0983.83026 · doi:10.1016/S0370-2693(99)00035-0
[11] Garcia, A. hep-th/9909111
[12] Fernando, S., and Mansouri, F. (1998). Co
[13] Martinez, C., Teitelboim, C., and Zanelli, · doi:10.1103/PhysRevD.61.104013
[14] Martinez, C. and Zanelli, · doi:10.1103/PhysRevD.54.3830
[15] Hennaux, M., Martinez, C., Troncoso, R., and Zanelli, · doi:10.1103/PhysRevD.65.104007
[16] Virbhadr · doi:10.1007/BF02847608
[17] Dias, O. J. C. and Lemo · doi:10.1088/1126-6708/2002/01/006
[18] Dias, O. J. C., and Lemos, J. P · doi:10.1103/PhysRevD.64.064001
[19] Dias, O. J. C., and Lemos, J. · doi:10.1103/PhysRevD.66.024034
[20] Chan, K. C. K. and Mann, R. · doi:10.1016/0370-2693(95)01609-0
[21] Chan, K. C · doi:10.1103/PhysRevD.55.3564
[22] Brown, J. D., Creighton, J., and Mann, R. · doi:10.1103/PhysRevD.50.6394
[23] Kraus, P. and Wilczek, · doi:10.1016/0550-3213(94)00411-7
[24] Kraus, P. and Wilczek, · doi:10.1016/0550-3213(94)00588-6
[25] Keski-Vakkuri, E. and Kraus, · doi:10.1016/S0550-3213(97)00085-0
[26] Newman, E. T. and Penrose, R · Zbl 0108.40905 · doi:10.1063/1.1724257
[27] Newman, E. T. and Penrose, R · doi:10.1063/1.1704025
[28] Aliev, A. N. and Nutku, Y. (199 · Zbl 0839.53075 · doi:10.1088/0264-9381/12/12/009
[29] Hall, G. S., Morgan, T., and Perjes, Z. · Zbl 0629.53022 · doi:10.1007/BF00759150
[30] Dreyer, O. (2001). Penn. State PhD Dissertation, Appendix A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.