zbMATH — the first resource for mathematics

A symmetric finite volume scheme for selfadjoint elliptic problems. (English) Zbl 1027.65150
The authors introduce a new symmetric finite volume scheme for a general self-adjoint elliptic boundary value problem. Some relations between finite volume methods and finite difference methods are discussed. Some error estimates are provided for the \(L^2\)-norm, \(H^1\)-norm and \(L^{\infty}\)-norm. Furthermore, post-processing techniques are presented. Finally, some numerical results are performed on two academic cases.

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
65N15 Error bounds for boundary value problems involving PDEs
Full Text: DOI
[1] Adams, R.A., Sobolev spaces, (1975), Academic Press New York · Zbl 0186.19101
[2] Bank, R.E.; Rose, D.J., Some error estimates for the box method, SIAM J. numer. anal., 24, 777-787, (1987) · Zbl 0634.65105
[3] Cai, Z., On the finite volume element method, Numer. math., 58, 713-735, (1991) · Zbl 0731.65093
[4] Cai, Z.; Mandel, J.; McCormick, S., The finite volume element method for diffusion equations on general triangulations, SIAM J. numer. anal., 28, 392-402, (1991) · Zbl 0729.65086
[5] Chou, S.; Li, Q., Error estimates in \(L\^{}\{2\},H\^{}\{1\}\) and L∞ in covolume methods for elliptic and parabolic problems: a unified approach, Math. comp., 69, 103-120, (1999)
[6] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam, New York, Oxford · Zbl 0445.73043
[7] Ewing, R.; Lazarov, R.; Lin, Y., Finite volume element approximations of nonlocal reactive flows in porous media, Numer. meth. PDEs., 5, 285-311, (2000) · Zbl 0961.76050
[8] Ewing, R.; Lazarov, R.; Vassilevski, P., Local refinement techniques for elliptic problems on cell-centered grids I. error analysis, Math. comp., 56, 437-461, (1991) · Zbl 0724.65093
[9] Hackbusch, W., On first and second order box schemes, Computing, 41, 277-296, (1989) · Zbl 0649.65052
[10] Heinrich, B., Finite difference methods on irregular networks, (1987), Akademie Verlag Berlin
[11] Hoffmann, W.; Schatz, A.H.; Wahlbin, L.B.; Wittum, G., Asymptotically exactly a posteriori estimators for the pointwise gradient error on each element in irregular meshes, part 1: a smooth problem and globally quasi-uniform meshes, Math. comp., 70, 897-909, (2001) · Zbl 0969.65099
[12] Huang, J.; Xi, S., On the finite volume element method for general selfadjoint elliptic problems, SIAM J. numer. anal., 35, 1762-1774, (1998) · Zbl 0913.65097
[13] Krizek, M.; Neittaanmaki, P., On superconvergence techniques, Acta appl. math., 9, 175-198, (1987) · Zbl 0624.65107
[14] R. Li, Z. Chen, W. Wu, Generalized difference methods for differential equations: numerical analysis of finite volume methods, Pure and Applied Mathematics, Vol. 226, Marcel Dekker, New York, 1999.
[15] Li, B.; Zhang, Z., Analysis of a class of superconvergence patch recovery techniques for linear and bilinear finite elements, Numer. methods for pdes, 15, 151-167, (1997) · Zbl 0920.65067
[16] Q. Lin, Q. Zhu, The Preprocessing and Postprocessing for the Finite Element Method, Shanghai Science and Technical Publishers, 1994 (in Chinese).
[17] Rannacher, R.; Scott, R., Some optimal error estimates for piecewise linear finite element approximation, Math. comp., 38, 437-445, (1982) · Zbl 0483.65007
[18] Yan, N.; Zhou, A., Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes, Comput. methods appl. mech. engrg., 190, 4289-4299, (2001) · Zbl 0986.65098
[19] Zhou, A.; Li, J., The full approximation accuracy for the stream function – vorticity – pressure method, Numer. math., 68, 427-435, (1994) · Zbl 0823.65110
[20] O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates, Parts 1 and 2. Int. J. Numer. Methods Engrg. 33 1992 1331-1364 and 1365-1382. · Zbl 0769.73084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.