×

Design sensitivity analysis and optimization of steady fluid-thermal systems. (English) Zbl 1028.76006

From the summary: We augment the analysis capabilities of a computational fluid dynamics (CFD) code with design sensitivity analysis (DSA). The design sensitivities are computed efficiently via analytical differentiation methods. The CFD-DSA codes are then combined with numerical optimization schemes. Finally, CFD-DSA design optimization algorithm is applied to the optimization of heat exchanger fin and HVAC duct systems.

MSC:

76D55 Flow control and optimization for incompressible viscous fluids
80M50 Optimization problems in thermodynamics and heat transfer

Software:

DOT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Newman III, J. C.; Taylor III, A. C.; Barnwell, R. W.; Newman, P. A.; Hou, G. J.W., Overview of sensitivity analysis and shape optimization for complex aerodynamic configurations, Journal of Aircraft, 36, 1, 87-96 (1999)
[2] Taylor III, A. C.; Korivi, V. M.; Hou, G. W., Taylor series approximation of geometric shape variation for the Euler equations, AIAA Journal, 30, 8, 2163-2165 (1992) · Zbl 0812.76040
[3] Appa, K.; Argyris, J.; Guruswamy, G. P.; Martin, C. A., Synergistic aircraft design using CFD air loads, Computer Methods in Applied Mechanics and Engineering, 166, 247-259 (1998) · Zbl 0949.76074
[4] (Periaux, J.; Bugeda, G.; Chaviaropoulos, P. K.; Giannakoglou, K.; Lanteri, S.; Mantel, B., Optimum Aerodynamics Design and Parallel Navier-Stocks Computations (1998), Verlag Vieweg: Verlag Vieweg Wiesbaden, Germany), 221-468 · Zbl 0898.76001
[5] Takahashi, S.; Obayashi, S.; Nakahashi, K., Inverse design optimization of transonic wings based on multi-objective genetic algorithms, AIAA Journal, 37, 1656-1662 (1999)
[6] Bouzida, S.; Mignot, C., Optimization of fin louver design based on CFD, SAE Technical Paper Series, 43-53 (1997)
[7] Kondo, Y.; Behnia, M.; Nakayama, W.; Matsushima, H., Optimization of finned heat sinks for impingement cooling of electronic packages, Journal of Electronic Packaging, 120, 259-266 (1998)
[8] Siegel, J. M.; Makhijani, V. B., Computational optimization of biomedical devices, ASME Proceedings for IMECE’98, 39, 85-86 (1998)
[9] Makinen, R. A.E.; Periaux, J.; Toivanen, J., Multidisciplinary shape optimization in aerodynamics and electromagnetics using generic algorithms, International Journal for Numerical Methods in Fluids, 30, 2, 149-159 (1999) · Zbl 0929.76105
[10] Roy, S., Combining Galerkin Matrix perturbation with Taylor weak statement algorithms, Computer Methods in Applied Mechanics and Engineering, 184, 1-2, 87-98 (2000) · Zbl 0987.76078
[11] Oden, J. T., Optimal hp-finite element methods, Computer Methods in Applied Mechanics and Engineering, 112, 309-331 (1994) · Zbl 0842.65068
[12] Babuska, I.; Guo, B. Q.; Stephan, E. P., On the exponential convergence of the \(h-p\) version for boundary element Galerkin methods on polygons, Mathematical Methods in the Applied Sciences, 12, 413-427 (1990) · Zbl 0701.65074
[13] Hughes, T. J.R., Multiscale phenomenon: Green functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Computer Methods in Applied Mechanics and Engineering, 127, 387-401 (1995) · Zbl 0866.76044
[14] C. Hirsch, Numerical Computation of Internal and External Flows. Vol. 2. Computational Methods for Inviscid and Viscous Flows, Wiley, West Sussex, UK, 1992; C. Hirsch, Numerical Computation of Internal and External Flows. Vol. 2. Computational Methods for Inviscid and Viscous Flows, Wiley, West Sussex, UK, 1992
[15] Roy, S.; Baker, A. J., Non-linear, subgrid embedded finite element for steady monotone CFD solutions. Part II. Benchmark Navier-Stokes solutions, Numerical Heat Transfer B, 33, 5-36 (1998)
[16] Baker, A. J.; Iannelli, J.; Chaffin, D. J.; Roy, S., Some recent adventures into improved finite element CFD methods for convective transport, Computer Methods in Applied Mechanics and Engineering, 151, 27-42 (1998) · Zbl 0920.76043
[17] Liu, W. K.; Chen, Y., Wavelet and multiple scale reproducing kernel methods, International Journal for Numerical Methods in Fluids, 21, 901-931 (1995) · Zbl 0885.76078
[18] Belegundu, A. D., Lagrangian approach to design sensitivity analysis, Journal of Engineering mechanics, 111, 5, 680-695 (1985)
[19] Vidal, C. A.; Haber, R. B., Design sensitivity analysis for rate-independent elastoplasticity, Computer Methods in Applied Mechanics and Engineering, 107, 393-431 (1993) · Zbl 0798.73076
[20] Haug, E. J.; Choi, K. K.; Komkov, V., Design Sensitivity Analysis of Structural Systems (1986), Academic Press: Academic Press New York · Zbl 0618.73106
[21] Smith, D. E.; Tortorelli, D. A.; Tucker, C. L., Analysis and sensitivity analysis for polymer injection and compression molding, Computer Methods in Applied Mechanics and Engineering, 167, 325-344 (1998) · Zbl 0932.82039
[22] D. Balagangadhar, D.A. Tortorelli, Design of large deformation steady elastoplastic manufacturing processes. Part II. Sensitivity analysis and optimization, International Journal for Numerical methods in Engineering 49 (2000) 933-950; D. Balagangadhar, D.A. Tortorelli, Design of large deformation steady elastoplastic manufacturing processes. Part II. Sensitivity analysis and optimization, International Journal for Numerical methods in Engineering 49 (2000) 933-950 · Zbl 1009.74051
[23] Michaleris, P.; Tortorelli, D. A.; Vidal, C. A., Tangent operators and design sensitivity formulations for transient nonlinear coupled problems with applications to elasto-plasticity, International Journal of Numerical Methods in Engineering, 37, 2471-2499 (1994) · Zbl 0808.73057
[24] Tortorelli, D. A.; Michaleris, P., Design sensitivity analysis: overview and review, Inverse Problems in Engineering, 1, 71-103 (1994)
[25] Smith, D. E.; Tortorelli, D. A.; Tucker, C. L., Optimal design for polymer extrusion. Part I. Sensitivity analysis for nonlinear steady-state systems, Computer Methods in Applied Mechanics and Engineering, 167, 283-302 (1998) · Zbl 0932.82038
[26] Smith, D. E.; Tortorelli, D. A.; Tucker, C. L., Optimal design for polymer extrusion. Part II. Sensitivity analysis for weakly-coupled nonlinear steady-state systems, Computer Methods in Applied Mechanics and Engineering, 167, 303-323 (1998) · Zbl 0932.82038
[27] DOT, DOT 3.0 Vanderplaats, Miura & Associates, Inc., Goleta, CA, 1991; DOT, DOT 3.0 Vanderplaats, Miura & Associates, Inc., Goleta, CA, 1991
[28] Spivey, C. O.; Tortorelli, D. A., Tangent operators, sensitivity expressions, and optimal design of nonlinear elastica in contact with applications to beams, International Journal for Numerical Methods in Engineering, 37, 49-73 (1994) · Zbl 0797.73067
[29] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, fourth ed., vols. 1 and 2, McGraw-Hill, New York, 1991; O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, fourth ed., vols. 1 and 2, McGraw-Hill, New York, 1991 · Zbl 0991.74002
[30] Fabbri, G., A genetic algorithm for fin profile optimization, International Journal of Heat and Mass Transfer, 40, 2165-2172 (1997) · Zbl 0933.74543
[31] T. Choi, C. Amon, T.I.-P.Shih, N. Trigui, CFD shape optimization based on an adjoint variable formulation of the incompressible Navier-Stokes equations, AIAA Paper 457, Reno, Nevada, January 2000; T. Choi, C. Amon, T.I.-P.Shih, N. Trigui, CFD shape optimization based on an adjoint variable formulation of the incompressible Navier-Stokes equations, AIAA Paper 457, Reno, Nevada, January 2000
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.