Ground-state solution of Bose–Einstein condensate by directly minimizing the energy functional. (English) Zbl 1028.82500

Summary: In this paper, we propose a new numerical method to compute the ground-state solution of trapped interacting Bose-Einstein condensation at zero or very low temperature by directly minimizing the energy functional via finite element approximation. As preparatory steps we begin with the 3d Gross-Pitaevskii equation (GPE), scale it to get a three-parameter model and show how to reduce it to 2d and 1d GPEs. The ground-state solution is formulated by minimizing the energy functional under a constraint, which is discretized by the finite element method. The finite element approximation for 1d, 2d with radial symmetry and 3d with spherical symmetry and cylindrical symmetry are presented in detail and approximate ground-state solutions, which are used as initial guess in our practical numerical computation of the minimization problem, of the GPE in two extreme regimes: very weak interactions and strong repulsive interactions are provided. Numerical results in 1d, 2d with radial symmetry and 3d with spherical symmetry and cylindrical symmetry for atoms ranging up to millions in the condensation are reported to demonstrate the novel numerical method. Furthermore, comparisons between the ground-state solutions and their Thomas-Fermi approximations are also reported. Extension of the numerical method to compute the excited states of GPE is also presented.


82-08 Computational methods (statistical mechanics) (MSC2010)
81-08 Computational methods for problems pertaining to quantum theory
81V80 Quantum optics
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
49K35 Optimality conditions for minimax problems
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B10 Quantum equilibrium statistical mechanics (general)
Full Text: DOI arXiv


[1] R.A. Adams, Sobolev Spaces, 1975 · Zbl 0314.46030
[2] Adhikari, S.K., Numerical solution of the two-dimensional gross – pitaevskii equation for trapped interacting atoms, Phys. lett. A, 265, 91, (2000)
[3] Adhikari, S.K., Numerically study of the spherically symmetric gross – pitaevskii equation in two space dimensions, Phys. rev. E, 62, 2937, (2000)
[4] Adhikari, S.K., Collapse of attractive bose – einstein condensed vortex states in a cylindrical trap, Phys. rev. E, 65, 016703, (2002)
[5] Adhikari, S.K.; Muruganandam, P., Bose – einstein condensation dynamics from the numerical solution of the gross – pitaevskii equation, J. phys. B, 35, 2831, (2002)
[6] Aftalion, A.; Du, Q., Vortices in a rotating bose – einstein condensate: critical angular velocities and energy diagrams in the thomas – fermi regime, Phys. rev. A, 64, 063603, (2001)
[7] Anderson, M.H.; Ensher, J.R.; Mathews, M.R.; Wieman, C.E.; Cornell, E.A., Science, 269, 198, (1995)
[8] Anglin, J.R.; Ketterle, W., Bose – einstein condensation of atomic gases, Nature, 416, 211, (2002)
[9] W. Bao, D. Jaksch, P.A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J. Comput. Phys. (to appear) · Zbl 1028.82501
[10] Bao, W.; Jin, Shi; Markowich, P.A., On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. comput. phys., 175, 487, (2002) · Zbl 1006.65112
[11] W. Bao, Shi Jin, P.A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes, SIAM J. Sci. Comput. (to appear) · Zbl 1038.65099
[12] Bose, S.N., Z. phys., 26, 178, (1924)
[13] Bradley, C.C.; Sackett, C.A.; Hulet, R.G., Phys. rev. lett., 78, 985, (1997)
[14] Cerimele, M.M.; Chiofalo, M.L.; Pistella, F.; Succi, S.; Tosi, M.P., Numerical solution of the gross – pitaevskii equation using an explicit finite-difference scheme: an application to trapped bose – einstein condensates, Phys. rev. E, 62, 1382, (2000)
[15] Cerimele, M.M.; Pistella, F.; Succi, S., Particle-inspired scheme for the gross – pitaevski equation: an application to bose – einstein condensation, Comput. phys. commun., 129, 82, (2000) · Zbl 1112.82305
[16] Chiofalo, M.L.; Succi, S.; Tosi, M.P., Ground state of trapped interacting bose – einstein condensates by an explicit imaginary-time algorithm, Phys. rev. E, 62, 7438, (2000)
[17] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
[18] Cornell, E., Very cold indeed: the nanokelvin physics of bose – einstein condensation, J. res. natl. inst. stan., 101, 419, (1996)
[19] Dalfovo, F.; Stringari, S., Bosons in anisotropic traps: ground state and vortices, Phys. rev. A, 53, 2477, (1996)
[20] Dodd, R.J., Approximate solutions of the nonlinear Schrödinger equation for ground and excited states of bose – einstein condensates, J. res. natl. inst. stan., 101, 545, (1996)
[21] Edwards, M.; Burnett, K., Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms, Phys. rev. A, 51, 1382, (1995)
[22] Einstein, A., Sitz. ber. kgl. preuss. adad. wiss., 22, 261, (1924)
[23] Ensher, J.R.; Jin, D.S.; Mathews, M.R.; Wieman, C.E.; Cornell, E.A., Phys. rev. lett., 77, 4984, (1996)
[24] Gammal, A.; Frederico, T.; Tomio, L., Improved numerical approach for the time-independent gross – pitaevskii nonlinear Schrödinger equation, Phys. rev. E, 60, 2421, (1999)
[25] ()
[26] Gottlieb, D.; Orszag, S.A., Numerical analysis of spectral methods, (1977), Society for Industrial and Applied Mathematics Philadephia · Zbl 0412.65058
[27] Gross, E.P., Nuovo. cimento., 20, 454, (1961)
[28] Holland, M.J.; Jin, D.S.; Chiofalo, M.L.; Cooper, J., Emergence of interaction effects in bose – einstein condensation, Phys. rev. lett., 78, 3801, (1997)
[29] Jackson, A.D.; Kavoulakis, G.M.; Pethick, C.J., Solitary waves in clouds of bose – einstein condensed atoms, Phys. rev. A, 58, 2417, (1998)
[30] Laudau, L.; Lifschitz, E., Quantum mechanics: non-relativistic theory, (1977), Pergamon Press New York
[31] Leboeuf, P.; Pavloff, N.; Dunjko, V.; Lorent, V.; Olshanii, M., Phys. rev. A, Phys. rev. lett., 86, 5413, (2001)
[32] Lieb, E.H.; Seiringer, R.; Yngvason, J., Bosons in a trap: a rigorous derivation of the gross – pitaevskii energy functional, Phys. rev. A, 61, 3602, (2000)
[33] Levine, I.N., Quantum chemistry, (1991), Prentice-Hall New York
[34] Morton, K.W.; Mayers, D.F., Numerical solution of partial differential equations, (1994), Cambridge University Press Cambridge · Zbl 0811.65063
[35] Nash, S.G.; Sofer, A., Linear and nonlinear programming, (1996), McGraw-Hill New York
[36] Pitaevskii, L.P., Zh. eksp. teor. fiz., 40, 646, (1961), (Sov. Phys. JETP 13 (1961) 451.)
[37] Ruprecht, P.A.; Holland, M.J.; Burrett, K.; Edwards, M., Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms, Phys. rev. A, 51, 4704, (1995)
[38] Schneider, B.I.; Feder, D.L., Numerical approach to the ground and excited states of a bose – einstein condensated gas confined in a completely anisotropic trap, Phys. rev. A, 59, 2232, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.