×

zbMATH — the first resource for mathematics

Signatures in the Planck regime. (English) Zbl 1029.83501
Summary: String theory suggests the existence of a minimum length scale. An exciting quantum mechanical implication of this feature is a modification of the uncertainty principle. In contrast to the conventional approach, this generalised uncertainty principle does not allow to resolve space-time distances below the Planck length. In models with extra dimensions, which are also motivated by string theory, the Planck scale can be lowered to values accessible by ultra high energetic cosmic rays (UHECRs) and by future colliders, i.e., \(M_f\approx 1\) TeV. It is demonstrated that in this novel scenario, short distance physics below \(1/M_f\) is completely cloaked by the uncertainty principle. Therefore, Planckian effects could be the final physics discovery at future colliders and in UHECRs. As an application, we predict the modifications to the \(e^+e^-\rightarrow f^+f^-\) cross-sections.

MSC:
83C45 Quantization of the gravitational field
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Gross, D.J.; Mende, P.F., Nucl. phys. B, 303, 407, (1988)
[2] Amati, D.; Ciafaloni, M.; Veneziano, G., Phys. lett. B, 216, 41, (1989)
[3] Witten, E., Phys. today, 49, 24, (1996)
[4] Garay, L.J., Int. J. mod. phys. A, 10, 145, (1995)
[5] Kempf, A.
[6] Kempf, A.; Mangano, G.; Mann, R.B., Phys. rev. D, 52, 1108, (1995)
[7] Kempf, A.; Mangano, G., Phys. rev. D, 55, 7909, (1997)
[8] Hassan, S.F.; Sloth, M.S.
[9] Danielsson, U.H., Phys. rev. D, 66, 023511, (2002)
[10] Shankaranarayanan, S., Class. quantum grav., 20, 75, (2003)
[11] Mersini, L.; Bastero-Gil, M.; Kanti, P., Phys. rev. D, 64, 043508, (2001)
[12] Kempf, A., Phys. rev. D, 63, 083514, (2001)
[13] Kempf, A.; Niemeyer, J.C., Phys. rev. D, 64, 103501, (2001)
[14] Martin, J.; Brandenberger, R.H., Phys. rev. D, 63, 123501, (2001)
[15] Easther, R.; Greene, B.R.; Kinney, W.H.; Shiu, G.
[16] Brandenberger, R.H.; Martin, J., Mod. phys. lett. A, 16, 999, (2001)
[17] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G., Phys. lett. B, 429, 263, (1998)
[18] Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G., Phys. lett. B, 436, 257, (1998)
[19] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G., Phys. rev. D, 59, 086004, (1999)
[20] Randall, L.; Sundrum, R., Phys. rev. lett., 83, 4690, (1999)
[21] Randall, L.; Sundrum, R., Phys. rev. lett., 83, 3370, (1999)
[22] Dienes, K.R.; Dudas, E.; Gherghetta, T.
[23] Uehara, Y.
[24] Cheung, K.
[25] Cullen, S.; Perelstein, M.; Peskin, M.E., Phys. rev. D, 62, 055012, (2000)
[26] Cullen, S.; Perelstein, M., Phys. rev. lett., 83, 268, (1999)
[27] Hewett, J.; Spiropulu, M.
[28] Barger, V.; Han, T.; Kao, C.; Zhang, R.-J., Phys. lett. B, 461, 34, (1999)
[29] Hanhart, C.; Pons, J.A.; Phillips, D.R.; Reddy, S., Phys. lett. B, 509, 1, (2001)
[30] Mirabelli, E.A.; Perelstein, M.; Peskin, M.E., Phys. rev. lett., 82, 2236, (1999)
[31] Giudice, G.F.; Rattazzi, R.; Wells, J.D., Nucl. phys. B, 544, 3, (1999)
[32] Giudice, G.F.; Rattazzi, R.; Wells, J.D., Nucl. phys. B, 595, 250, (2001)
[33] Hewett, J.L., Phys. rev. lett., 82, 4765, (1999)
[34] Nussinov, S.; Shrock, R., Phys. rev. D, 59, 105002, (1999)
[35] Rizzo, T.G.
[36] Argyres, P.C.; Dimopoulos, S.; March-Russell, J., Phys. lett. B, 441, 96, (1998)
[37] Giddings, S.B.
[38] Mocioiu, I.; Nara, Y.; Sarcevic, I., Phys. lett. B, 557, 87, (2003)
[39] Kotwal, A.V.; Hays, C., Phys. rev. D, 66, 116005, (2002)
[40] Uehara, Y., Prog. theor. phys., 107, 621, (2002)
[41] Emparan, R.; Masip, M.; Rattazzi, R., Phys. rev. D, 65, 064023, (2002)
[42] Hossenfelder, S.; Hofmann, S.; Bleicher, M.; Stocker, H., Phys. rev. D, 66, 101502, (2002)
[43] Ringwald, A.; Tu, H., Phys. lett. B, 525, 135, (2002)
[44] Kazanas, D.; Nicolaidis, A., Gen. relativ. gravit., 35, 1117, (2003)
[45] Amelino-Camelia, G., Nature, 418, 34, (2002)
[46] Magueijo, J.; Smolin, L., Phys. rev. lett., 88, 190403, (2002)
[47] Toller, M.
[48] Rovelli, C.; Speziale, S., Phys. rev. D, 67, 064019, (2003)
[49] Dadic, I.; Jonke, L.; Meljanac, S., Phys. rev. D, 67, 087701, (2003)
[50] Kempf, A., J. phys. A, 30, 2093, (1997)
[51] Brau, F., J. phys. A, 32, 7691, (1999)
[52] F. Brau, private communication
[53] Akhoury, R.; Yao, Y.P.
[54] Udem, T., Phys. rev. lett., 79, 2646, (1997)
[55] Harbach, U.; Hossenfelder, S.; Bleicher, M.; Stöcker, H.
[56] Ryder, L.H., Quantum field theory, (2001), Cambridge Univ. Press Cambridge
[57] Greiner, W.; Reinhardt, J., Field quantization, (1996), Springer-Verlag Berlin · Zbl 0844.00006
[58] S. Weinberg, The Quantum Theory of Fields, Vol. I, Cambridge · Zbl 0885.00020
[59] Banks, T.; Fischler, W.
[60] Giddings, S.B.; Thomas, S., Phys. rev. D, 65, 056010, (2002)
[61] KASCADE-Grande: http://www.ik.fzk.de/KASCADE_home.html; AUGER: http://www.auger.org
[62] \scLEPEWWG\(ff̄\) subgroup, D. Bourikov, et al., \scLEP2ff/01-02 (2001)
[63] Abbiendi, G.
[64] Giudice, G.F.; Rattazzi, R.; Wells, J.D., Nucl. phys. B, 544, 3, (1999)
[65] Hewett, J.; Spiropulu, M., Annu. rev. nucl. part. sci., 52, 397, (2002)
[66] Han, T.; Lykken, J.D.; Zhang, R.J., Phys. rev. D, 59, 105006, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.