×

zbMATH — the first resource for mathematics

A local-world evolving network model. (English) Zbl 1029.90502
Summary: We propose and study a novel evolving network model with the new concept of local-world connectivity, which exists in many physical complex networks. The local-world evolving network model represents a transition between power-law and exponential scaling, while the Barabási-Albert scale-free model is only one of its special (limiting) cases. We found that this local-world evolving network model can maintain the robustness of scale-free networks and can improve the network reliance against intentional attacks, which is the inherent fragility of most scale-free networks.

MSC:
90B10 Deterministic network models in operations research
68U35 Computing methodologies for information systems (hypertext navigation, interfaces, decision support, etc.)
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Erdös, P.; Rényi, A., Publ. math., 6, 290, (1959)
[2] Erdös, P.; Rényi, A., Publ. math. inst. hung. acad. sci., 5, 17, (1960)
[3] M.E.J. Newman, Santa Fe Institute working paper 02-02-005.
[4] Newman, M.E.J., J. statist. phys., 101, 819, (2000)
[5] Strogatz, S.H., Nature, 410, 268, (2001)
[6] Watts, D.J., Small worlds, (1999), Princeton Univ. Press Princeton · Zbl 0940.82029
[7] Watts, D.J.; Strogatz, S.H., Nature, 393, 440, (1998)
[8] Barabási, A.L.; Albert, R., Science, 285, 509, (1999)
[9] Barabási, A.L.; Albert, R.; Jeong, H., Physica A, 272, 173, (1999)
[10] Barabási, A.L.; Albert, R.; Jeong, H.; Bianconi, G., Science, 287, 2115 a, (2000)
[11] Albert, R.; Barabási, A.L., Rev. mod. phys., 74, 47, (2002)
[12] Krapivsky, P.L.; Redner, S.; Leyvraz, F., Phys. rev. lett., 85, 4629, (2000)
[13] Dorogovstsev, S.N.; Mendes, J.F.F., Phys. rev. E, 63, 025101, (2001)
[14] Dorogovstsev, S.N.; Mendes, J.F.F., Phys. rev. E, 62, 1842, (2000)
[15] Albert, R.; Barabási, A.L., Phys. rev. lett., 85, 5234, (2000)
[16] Dorogovstsev, S.N.; Mendes, J.F.F., Europhys. lett., 52, 33, (2000)
[17] Bianconi, G.; Barabási, A.L., Europhys. lett., 54, 436, (2001)
[18] J. Jost, M.P. Joy, Preprint Cond-mat/0202343.
[19] M.A. Serrano, M. Boguna, Preprint Cond-mat/0301015.
[20] Li, X.; Jin, Y.Y.; Chen, G., Physica A, 328, 287, (2003)
[21] Dayhoff, M.O., Fed. proc., 35, 2132, (1976)
[22] Dorogovstsev, S.N.; Mendes, J.F.F.; Samukhim, A.N., Phys. rev. lett., 85, 4633, (2000)
[23] Wang, X.F.; Chen, G., IEEE trans. circuits syst. I, 49, 54, (2002)
[24] May, R.M.; Lloyd, A.L., Phys. rev. E, 64, 066112, (2001)
[25] Volchenkov, D.; Volchenkov, L.; Blanchard, Ph., Phys. rev. E, 66, 046137, (2002)
[26] Albert, R.; Jeong, H.; Barabási, A.L., Nature, 406, 378, (2000)
[27] Wu, C.W.; Chua, L.O., IEEE trans. circuits syst. I, 42, 430, (1995)
[28] Koonin, E.V.; Wolf, Y.I.; Karev, G.P., Nature, 420, 218, (2002)
[29] S.N. Dorogovstsev, J.F.F. Mendes, Preprint Cond-mat/0105093.
[30] Kim, H.J.; Kim, I.M., J. Korean phys. soc., 40, 1105, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.