# zbMATH — the first resource for mathematics

Meromorphic functions that share fixed-points. (English) Zbl 1030.30028
Let $$f(z)$$ and $$g(z)$$ be two meromorphic functions, $$n\geq 11$$. If $$f^n(z) f'(z)- z$$ and $$g^n(z) g'(z)- z$$ assume the same zeros with the same multiplicities, then either $f(z)= c_1 e^{cz^2},\quad g(z)= c_2 e^{-cz^2}\quad (4(c_1 c_2)^{n+ 1}C^2= -1)$ or $f(z)= tg(z)\qquad (t^{n+1}= 1).$ .

##### MSC:
 30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory 30D30 Meromorphic functions of one complex variable, general theory
##### Keywords:
meromorphic function; uniqueness theorem; fixed point
Full Text:
##### References:
  Bergweiler, W.; Eremenko, A., On the singularities of the inverse to a meromorphic function of finite order, Rev. mat. iberoamericana, 11, 355-373, (1995) · Zbl 0830.30016  Chen, H.H.; Fang, M.L., On the value distribution of f^nf′, Sci. China ser. A, 38, 789-798, (1995) · Zbl 0839.30026  Clunie, J., On a result of Hayman, J. London math. soc., 42, 389-392, (1967) · Zbl 0169.40801  Fang, M.L.; Hua, X.H., Entire functions that share one value, J. Nanjing univ. math. biquart., 13, 44-48, (1996) · Zbl 0899.30022  Fang, M.L., A note on a problem of Hayman, Analysis, 20, 45-49, (2000) · Zbl 0948.30030  Gundersen, G.G., Meromorphic functions that share four values, Trans. amer. math. soc., 277, 545-567, (1983) · Zbl 0508.30029  Hayman, W.K., Meromorphic functions, (1964), Clarendon Oxford · Zbl 0115.06203  Hayman, W.K., Picard values of meromorphic functions and their derivatives, Ann. math., 70, 9-42, (1959) · Zbl 0088.28505  Mues, E., Über ein problem von Hayman, Math. Z., 164, 239-259, (1979) · Zbl 0402.30034  Mues, E.; Reinders, M., Meromorphic functions sharing one value and unique range sets, Kodai math. J., 18, 515-522, (1995) · Zbl 0919.30023  Yang, C.C., On deficiencies of differential polynomials, II, Math. Z., 125, 107-112, (1972) · Zbl 0217.38402  Yang, C.C.; Hua, X.H., Uniqueness and value-sharing of meromorphic functions, Ann. acad. sci. fenn. math., 22, 395-406, (1997) · Zbl 0890.30019  Yang, L., Value distribution theory, (1993), Springer-Verlag Berlin  Yi, H.X.; Yang, C.C., Unicity theory of meromorphic functions, (1995), Science Press Beijing  L. Zalcman, On some problems of Hayman, preprint, Bar-Ilan University. · Zbl 0974.30025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.