×

zbMATH — the first resource for mathematics

Bäcklund transformations and loop group actions. (English) Zbl 1031.37064
The article describes Bäcklund transformations of integrable systems as a special case of dressing actions. The general dressing action of integrable systems, introduced by Zakharov and Shabat, is a local action of the full loop group defined in terms of loop group factorization. According to the article under review, the special case of Bäcklund transformations corresponds to the action of fractional linear loops, the so called simple elements. In this setting, Bianchi permutability theorems are obtained by applying different factorizations of quadratic elements into simple elements.
While in the general case of dressing actions an explicit computation of the loop group factorization amounts to solving a Riemann-Hilbert problem, the computation of Bäcklund transformations is purely algebraic, provided one already has a trivialization of the flat connection corresponding to the Lax pair. In particular, a new solution of a nonlinear partial differential equation (the compatibility or zero-curvature equation) can be computed from a given one by solving ordinary differential equations (namely those corresponding to trivializing the underlying flat connection).
The focus of the article is on the ZS-AKNS \(sl(n,\mathbb{C})\)-hierarchy, whose different real forms include the famous KdV-, mKdV- and NLS-equations as well as the sine-Gordon equation. It is shown that the classical Bäcklund transformation of the sine-Gordon equation is a special case of the general Bäcklund transformation.

MSC:
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
35Q53 KdV equations (Korteweg-de Vries equations)
17B80 Applications of Lie algebras and superalgebras to integrable systems
22E67 Loop groups and related constructions, group-theoretic treatment
37K30 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with infinite-dimensional Lie algebras and other algebraic structures
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Ablowitz, Studies in Appl Math 53 pp 249– (1974) · Zbl 0408.35068
[2] Adler, Comm Math Phys 61 pp 1– (1978)
[3] Concerning surfaces with constant negative curvature. New Era, Lancaster, Pa., original 1883, translation 1905.
[4] Beals, Comm Pure Appl Math 37 pp 39– (1984)
[5] Beals, Comm Pure Appl Math 38 pp 29– (1985)
[6] ; ; Direct and inverse scattering on the line. Mathematical Surveys and Monographs, 28. American Mathematical Society, Providence, R.I., 1988.
[7] Bobenko, J Differential Geom 43 pp 527– (1996)
[8] Basic methods of soliton theory. Advanced Series in Mathematical Physics, 25. World Scientific, River Edge, N.J., 1996.
[9] Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal. Troisième partie. Lignes géodésiques et courbure géodésique. Paramètres différentiels. Déformation des surfaces. Réimpression de la première édition de 1894. Chelsea, Bronx, N.Y., 1972.
[10] Deift, Duke Math J 45 pp 267– (1978)
[11] Drinfel’d, Dokl Akad Nauk SSSR 258 pp 11– (1981)
[12] Soviet Math Dokl 23 pp 457–
[13] ; Lie algebras and equations of Korteweg-de Vries type. Current problems in mathematics, Vol. 24, 81-180, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984.
[14] A treatise on the differential geometry of curves and surfaces. Dover, New York, 1960.
[15] ; Hamiltonian methods in the theory of solitons. Translated from the Russian by A. G. Reyman [A. G. Reiman]. Springer Series in Soviet Mathematics. Springer, Berlin-New York, 1987. · Zbl 1111.37001
[16] Fordy, Comm Math Phys 89 pp 427– (1983)
[17] Gu, Lett Math Phys 32 pp 1– (1994)
[18] Kupershmidt, Invent Math 62 pp 403– (1981)
[19] Pohlmeyer, Comm Math Phys 46 pp 207– (1976)
[20] ; Loop groups. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1986.
[21] Sattinger, Stud Appl Math 72 pp 65– (1985) · Zbl 0584.58022
[22] ; Gauge theory of Bäcklund transformations. I. Dynamics of infinite-dimensional systems (Lisbon, 1986), 273-300, NATO Adv Sci Inst Ser F: Comput Systems Sci, 37. Springer, Berlin-New York, 1987.
[23] Sattinger, Phys D 26 pp 225– (1987)
[24] Shatah, Phys D 99 pp 113– (1996)
[25] Terng, J Differential Geom 45 pp 407– (1997)
[26] ; Homoclinic wave maps into compact symmetric spaces. In preparation.
[27] ; Poisson actions and scattering theory for integrable systems. Preprint dg-ga 9707004.
[28] Uhlenbeck, J Differential Geom 30 pp 1– (1989)
[29] Uhlenbeck, J Geom Phys 8 pp 283– (1992)
[30] Zakharov, JETP Letters 18 pp 243– (1973)
[31] Zakharov, Soviet Physics JETP 42 pp 842– (1975)
[32] Ž Èksper Teoret Fiz 69 pp 1654– (1975)
[33] Zakharov, Soviet Physics JETP 34 pp 62– (1972)
[34] Ž Èksper Teoret Fiz 61 pp 118– (1971)
[35] Zakharov, Funktsional Anal i Prilozhen 13 pp 13– (1979)
[36] Funct Anal Appl 13 pp 166– (1979) · Zbl 0448.35090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.