zbMATH — the first resource for mathematics

Study of a Leslie-Gower-type tritrophic population model. (English) Zbl 1031.92027
Summary: A three-dimensional continuous time dynamical system is considered. It is a model for a tritrophic food chain, based on a modified version of the Leslie-Gower scheme [P. H. Leslie and J. C. Gower, Biometrika 47, 219-234 (1960; Zbl 0103.12502)]. We establish and prove theorems on boundedness of the system, existence of an attracting set, existence and local or global stability of equilibria which represent the extinction of the top or intermediate predator. Using intensive numerical qualitative analysis we show that the model could exhibit chaotic dynamics for realistic parameter and state values. Transition to chaotic behavior is established via period doubling bifurcation, and some sequences of distinctive period-halving are found.

92D40 Ecology
37N25 Dynamical systems in biology
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
65L99 Numerical methods for ordinary differential equations
PDF BibTeX Cite
Full Text: DOI
[1] El-Owaidy, H.M.; Ragab, A.A.; Ismail, M., Mathematical analysis of a food-web model, Appl. math. comput., 121, 2-3, 155-167, (2001) · Zbl 1017.92036
[2] Freedman, H.I.; So, J.W.H., Global stability and persistence of simple food chains, Math. biosci., 76, 69-86, (1985) · Zbl 0572.92025
[3] Freedman, H.I.; Waltman, P., Mathematic analysis of some three species food chains model, Math. biosci., 33, 257-276, (1977) · Zbl 0363.92022
[4] Klebanoff, A.; Hastings, A., Chaos in three species food-chain, J. math. biol., 32, 427-445, (1994) · Zbl 0823.92030
[5] Kuznetsov, Y.A.; Rinaldi, S., Remarks on food chain dynamics, Math. biosci., 134, 1-33, (1996) · Zbl 0844.92025
[6] Muratori, S.; Rinaldi, S., Low and high-frequency oscillations in three dimensional food chain systems, SIAM J. appl. math., 52, 1688-1706, (1992) · Zbl 0774.92024
[7] Rinaldi, S.; Dal Bo, S.; De Nittis, E., On the role of body size in a tri-trophic metapopulation model, J. math. biol., 35, 158-176, (1996) · Zbl 0865.92021
[8] Schaffer, W.M., Order and chaos in ecological systems, Ecology, 66, 93-106, (1985)
[9] Yodzis, P., Predator – prey theory and management of multispecies fisheries, Ecol. appl., 45, 51-58, (1994)
[10] Leslie, P.H.; Gower, J.C., The properties of a stochastic model for the predator – prey type of interaction between two species, Biometrica, 47, 219-234, (1960) · Zbl 0103.12502
[11] Hastings, A.; Powell, T., Chaos in three-species food chain, Ecology, 72, 896-903, (1991)
[12] Letellier, C.; Aziz-Alaoui, M.A., Analysis of the dynamics of a realistic ecological model, Chaos, solitons & fractals, 13, 1, 95-107, (2002) · Zbl 0977.92029
[13] Letellier, C.; Aguirre, L.; Maquet, J.; Aziz-Alaoui, M.A., Should all the species of a food chain be counted to investigate the global dynamics?, Chaos, solitons & fractals, 13, 5, 1099-1113, (2002) · Zbl 1004.92039
[14] Upadhyay, R.K.; Rai, V., Why chaos is rarely observed in natural populations?, Chaos, solitons & fractals, 8, 12, 1933-1939, (1997)
[15] Upadhyay, R.K.; Rai, V.; Iyengar, S.R.K., How do ecosystems respond to external perturbations?, Chaos, solitons & fractals, 11, 13, 1963-1982, (2000) · Zbl 0985.37105
[16] Upadhyay, R.K.; Rai, V.; Iyengar, S.R.K., Species extinction problem: genetic vs ecological factors, Appl. math. model., 25, 11, 937-951, (2001) · Zbl 0987.92031
[17] (), 142-216
[18] Rai, V.; Sreenivasan, R., Period-doubling bifurcations leading to chaos in a model food-chain, Ecol. model., 69, 63-67, (1993)
[19] Upadhyay, R.K.; Iyengar, S.R.K.; Rai, V., Chaos: an ecological reality, Int. J. bifurcation chaos, 8, 6, 1325-1333, (1998) · Zbl 0935.92037
[20] Rinaldi, S.; Muratori, S.; Kuznetsov, Y., Multiple attractors, catastrophies and chaos in seasonally perturbed predator prey communities, Bull. math. biol., 55, 15-35, (1993) · Zbl 0756.92026
[21] McCann, K.; Yodzis, P., Biological conditions for chaos in a three-species food chain, Ecology, 75, 561-564, (1994)
[22] Leslie, P.H., Some further notes on the use of matrices in population mathematics, Biometrica, 35, 213-245, (1948) · Zbl 0034.23303
[23] May, R.M., Stability and complexity in model ecosystems, (1973), Princeton University Press Princeton, NJ
[24] Boer, M.P.; Kooi, B.W.; Kooijman, S., Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain, J. math. biol., 39, 19-38, (1999) · Zbl 0926.92032
[25] Pielou, E.C., An introduction to mathematical ecology, (1969), Wiley-Interscience New York · Zbl 0259.92001
[26] Hanski, I.L.; Hansson, L.; Henttonen, H., Specialist predators, generalist predators, and the microtine rodent cycle, J. anim. ecol., 60, 353-367, (1991)
[27] Butler, G.J.; Hsu, S.B.; Waltman, T., Coexistence of competing predators in a chemostat, J. math. biol., 17, 133-151, (1983) · Zbl 0508.92019
[28] Freedman, H.I., Graphical stability enrichment and pest control by a natural nemy, Math. biosci., 31, 207-225, (1976) · Zbl 0373.92023
[29] Hsu, S.B., On global stability of a predator – prey system, Math. biosci., 39, 1-10, (1978) · Zbl 0383.92014
[30] Hsu, S.B.; Hubbell, S.P.; Waltman, P., Competing predators, SIAM J. appl. math., 35, 617-625, (1978) · Zbl 0394.92025
[31] Rosenzweig, M.L.; MacArthur, R.H., Graphical representation and stability conditions of predator – prey interaction, Amer. naturalist, 47, 209-223, (1963)
[32] Aziz-Alaoui MA. Period-doubling bifurcation leading to chaos in an ecological model. In: Proceedings of the 5th Int. Conf. SIAM on Dynamical Systems, 1999; Salt Lake City, Snowbird, UT
[33] Aziz-Alaoui MA, Daher MO. Bifurcation analysis of a three species food web model [in preparation]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.