Implicit dynamical systems and quasi variational inequalities. (English) Zbl 1032.47041

The author considers the problem of finding an element \(u \in K(u)\) such that \(\langle A(u),v-u \rangle \geq 0\) for all \(v \in K(u)\). Here, \(A: \mathbb{R}^n \to \mathbb{R}^n\) is a nonlinear operator and \(K: u \mapsto K(u)\) a point-to-set mapping with closed convex \(K(u) \subset \mathbb{R}^n\) for all \(u \in \mathbb{R}^n\). The original inequality is approximated by the dynamical system \(du/dt=\lambda \{ P_{K(u)} [u-\rho A(u)]-u \}\), \(u(t_0)=u_0\), where \(P_K\) stands for the projection from \(H\) onto \(K \subset H\) and \(\rho>0\). The author proves that the system is stable and the trajectory \(u(t)\) globally converges as \(t\to +\infty\) to the solution subset of the inequality provided that the operator \(A\) is pseudomonotone and \(\|P_{K(u)}w-P_{K(v)}w \|\leq \nu \|u-v\|\) for all \(u,v,w \in H\).


47J20 Variational and other types of inequalities involving nonlinear operators (general)
34G20 Nonlinear differential equations in abstract spaces
49J40 Variational inequalities
Full Text: DOI


[1] Baiocchi, C.; Capelo, A., Variational and quasi variational inequalities, (1984), Wiley New York · Zbl 1308.49003
[2] Bielecki, T.R.; Pliska, S.R., Risk sensitive asset management with transaction costs, Finance stochastics, 4, 1-33, (2000) · Zbl 0982.91024
[3] Cottle, R.W.; Giannessi, F.; Lions, J.L., Variational inequalities and complementarity problems: theory and applications, (1980), Wiley New York
[4] Dong, J.; Zhang, D.; Nagurney, A., A projected dynamical systems model of general financial equilibrium with stability analysis, Math. comput. modelling, 24, 2, 35-44, (1996) · Zbl 0858.90020
[5] Dupuis, P.; Nagurney, A., Dynamical systems and variational inequalities, Ann. oper. res., 44, 19-42, (1993) · Zbl 0785.93044
[6] Friesz, T.L.; Bernstein, D.H.; Mehta, N.J.; Ganjliazadeh, S., Day-to-day dynamic network disequilibria and idealized traveler information systems, Oper. res., 42, 1120-1136, (1994) · Zbl 0823.90037
[7] Friesz, T.L.; Bernstein, D.H.; Stough, R., Dynamic systems, variational inequalities and control theoretic models for predicting time-varying urban network flows, Trans. sci., 30, 14-31, (1996) · Zbl 0849.90061
[8] Giannessi, F.; Maugeri, A., Variational inequalities and network equilibrium problems, (1995), Plenum Press New York · Zbl 0834.00044
[9] Aslam Noor, M., Iterative algorithms for quasi variational inequalities, Panamer. math. J., 2, 2, 17-26, (1992) · Zbl 0842.49012
[10] Aslam Noor, M., Generalized wiener – hopf equations and nonlinear variational inequalities, Panamer. math. J., 4, 4, 51-70, (1992) · Zbl 0842.49011
[11] Aslam Noor, M., An iterative scheme for a class of quasi variational inequalities, J. math. anal. appl., 110, 463-468, (1985) · Zbl 0581.65051
[12] Aslam Noor, M., Some recent advances in variational inequalities, part I, basic concepts, N Z J. math., 26, 53-80, (1997) · Zbl 0886.49004
[13] Aslam Noor, M., Some recent advances in variational inequalities, part II, other concepts, N Z J. math., 26, 229-255, (1997) · Zbl 0889.49006
[14] Aslam Noor, M., Sensitivity analysis of quasi variational inequalities, J. optim. theory appl., 95, 145-154, (1997) · Zbl 0887.49008
[15] Aslam Noor, M., Resolvent dynamical systems for mixed variational inequalities, Korean J. comput. appl. math., (2002) · Zbl 1002.49011
[16] Aslam Noor, M., General variational inequalities, Appl. math. lett., 1, 119-121, (1988) · Zbl 0655.49005
[17] Aslam Noor, M., New approximation schemes for general variational inequalities, J. math. anal. appl., 251, 217-229, (2000) · Zbl 0964.49007
[18] Aslam Noor, M., Generalized multivalued quasi variational inequalities and implicit wiener – hopf equations, Optimization, 45, 197-222, (1999) · Zbl 0939.49009
[19] Aslam Noor, M., Wiener – hopf equations technique for variational inequalities, Korean J. comput. appl. math., 7, 581-598, (2000) · Zbl 0978.49011
[20] M. Aslam Noor, A Wiener-Hopf dynamical system for variational inequalities, N Z J. Math · Zbl 1047.49011
[21] Aslam Noor, M.; Inayat Noor, K.; Rassias, Th.M., Some aspects of variational inequalities, J. comput. appl. math., 47, 285-312, (1993) · Zbl 0788.65074
[22] Stampacchia, G., Formes bilineaires coercitives sur LES ensembles convexes, C.R. acad. sci. Paris, 258, 4413-4416, (1964) · Zbl 0124.06401
[23] Xia, Y.S.; Wang, J., A recurrent neural network for solving linear projection equations, Neural network, 13, 337-350, (2000)
[24] Xia, Y.S.; Wang, J., On the stability of globally projected dynamical systems, J. optim. theory appl., 106, 129-150, (2000) · Zbl 0971.37013
[25] Zhang, D.; Nagurney, A., On the stability of the projected dynamical systems, J. optim. theory appl., 85, 97-124, (1995) · Zbl 0837.93063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.