×

zbMATH — the first resource for mathematics

A new trust region method for nonsmooth equations. (English) Zbl 1032.65065
The author first introduces the concept of the Jacobian consistency property of a smoothing approximation function. Then a trust region algorithm is presented for solving systems of nonsmooth equations. The proposed algorithm is shown to be globally convergent, and locally superlinearly or quadratically convergent under mild conditions.

MSC:
65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF02591750 · Zbl 0576.90080
[2] Martínez, Math. Program. 76 pp 431– (1997)
[3] DOI: 10.1137/S1052623497328781 · Zbl 0986.90065
[4] DOI: 10.1137/S1052623495296541 · Zbl 0911.90324
[5] DOI: 10.1287/moor.17.3.586 · Zbl 0777.90057
[6] Gabriel, Large scale optimization: State of the Art pp 159– (1994)
[7] Gabriel, Complementarity and variational problems: State of the Art pp 105– (1997)
[8] DOI: 10.1007/BF01183013 · Zbl 0821.90101
[9] Dennis, Math. Program. 68 pp 319– (1995)
[10] DOI: 10.1090/S0025-5718-98-00932-6 · Zbl 0894.90143
[11] DOI: 10.1093/imanum/4.3.327 · Zbl 0555.65037
[12] DOI: 10.1007/BF01581136 · Zbl 0821.90108
[13] DOI: 10.1007/BF02591949 · Zbl 0577.90066
[14] DOI: 10.1007/BF01581275 · Zbl 0780.90090
[15] DOI: 10.1137/S036301299223619X · Zbl 0833.90109
[16] DOI: 10.1137/0805011 · Zbl 0832.90108
[17] DOI: 10.1287/moor.18.1.227 · Zbl 0776.65037
[18] DOI: 10.1137/0803021 · Zbl 0784.90082
[19] Moré, Mathematical programming: State of the Art pp 258– (1983)
[20] Martínez, Math. Program. 68 pp 267– (1995)
[21] Kanzow, Reformulation: Nonsmooth, piecewise smooth, semismooth and smoothing methods pp 211– (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.