×

zbMATH — the first resource for mathematics

Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation. (English) Zbl 1033.74011
Summary: We describe a mathematical model for analysis of hygro-thermal behaviour of concrete as a multi-phase porous material at high temperatures, accounting for material deterioration. Full development of the model equations is presented, starting from macroscopic balances of mass, energy and linear momentum of single constituents. Constitutive relationships for concrete at high temperature, including material damage, are discussed. The classical isotropic non-local damage theory is modified to take into account the mechanical and thermo-chemical concrete damage at high temperature. The final form of the governing equations, their discretised form, and their numerical solution are presented. Finally, we discuss two numerical examples concerning fire performance of one- and two-dimensional HPC structures.

MSC:
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74F05 Thermal effects in solid mechanics
74R99 Fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
74F25 Chemical and reactive effects in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amiez, G.; Gremaud, P.-A., On a numerical approach to Stefan-like problems, Numer. math., 59, 71-89, (1991) · Zbl 0731.65107
[2] ASHRAE Handbook Fundamentals, ASHRAE, Atlanta, 1993
[3] B. Bary, Etude de couplage hydraulique–mécanique dans le beton endomagé, in: Publication no. 11, Laboratoire de Mécanique et Technologie C.N.R.S. de Cachan, Université de Paris 6, Cachan, 1996
[4] Bazant, Z.P.; Najjar, L.J., Nonlinear water diffusion in nonsaturated concrete, Matér. construct. (Paris), 5, 3-20, (1972)
[5] Bazant, Z.P.; Thonguthai, W., Pore pressure and drying of concrete at high temperature, J. engrg. mech. div. ASCE, 104, 1059-1079, (1978)
[6] Bazant, Z.P.; Thonguthai, W., Pore pressure in heated concrete walls: theoretical prediction, Mag. concr. res., 31, 67-76, (1979)
[7] Bazant, Z.P.; Kaplan, M.F., Concrete at high temperatures: material properties and mathematical models, (1996), Longman Harlow
[8] Brite Euram III BRPR-CT95-0065 HITECO, Understanding and industrial application of high performance concrete in high temperature environment, Final Report, 1999
[9] Chaboche, J.L., Continuum damage mechanics: part I–general concept, J. appl. mech.-trans. ASME, 55, 59-64, (1988)
[10] Chaboche, J.L., Continuum damage mechanics: part II–damage growth, crack initiation, and crack growth, J. appl. mech. trans. ASME, 55, 65-72, (1988)
[11] Churaev, N.V., Liquid and vapour flows in porous bodies: surface phenomena, ()
[12] England, G.L.; Khoylou, N., Moisture flow in concrete under steady state non-uniform temperature states: experimental observations and theoretical modelling, Nucl. engrg. des., 156, 83-107, (1995)
[13] Furbish, D.J., Fluid physics in geology: an introduction to fluid motions on earth’s surface and within its crust, (1997), Oxford University Press Oxford
[14] D. Gawin, Modelling of Coupled Hygro-Thermal Phenomena in Building Materials and Building Components (in Polish), Publ. of Łódź Technical University No. 853, Editions of Łódź Technical University, Łódź, 2000
[15] D. Gawin, C. Alonso, C. Andrade, C.E. Majorana, F. Pesavento, Effect of damage on permeability and hygro-thermal behaviour of high performance concretes at elevated temperatures (in preparation)
[16] Gawin, D.; Baggio, P.; Schrefler, B.A., Modelling heat and moisture transfer in deformable porous building materials, Arch. civil engrg., 42, 325-349, (1996)
[17] Gawin, D.; Majorana, C.E.; Schrefler, B.A., Numerical analysis of hygro-thermic behaviour and damage of concrete at high temperature, Mech. cohes.-frict. mater., 4, 37-74, (1999)
[18] Gawin, D.; Pesavento, F.; Schrefler, B.A., Simulation of damage–permeability coupling in hygro-thermo-mechanical analysis of concrete at high temperature, Commun. numer. methods engrg., 18, 113-119, (2002) · Zbl 1093.74507
[19] Gawin, D.; Pesavento, F.; Schrefler, B.A., Modelling of hygro-thermal behaviour and damage of concrete at temperature above the critical point of water, Int. J. numer. anal. methods geomech., 26, 537-562, (2002) · Zbl 0995.74505
[20] Gawin, D.; Schrefler, B.A., Thermo-hydro-mechanical analysis of partially saturated porous materials, Engrg. comput., 13, 113-143, (1996) · Zbl 0983.76514
[21] Gerard, B.; Pijaudier-Cabot, J.; Laborderie, C., Coupled diffusion-damage modelling and the implications on failure due to strain localisation, Int. J. solids struct., 35, 4107-4120, (1998) · Zbl 0936.74062
[22] Gray, W.G., Macroscale equilibrium conditions for two-phase flow in porous media, Int. J. multiphase flow, 26, 467-550, (2000) · Zbl 1137.76596
[23] Gray, W.G.; Schrefler, B.A., Thermodynamic approach to effective stress in partially saturated porous media, Eur. J. mech. A/solids, 20, 521-538, (2001) · Zbl 1034.74019
[24] Gregg, S.J.; Sing, K.S.W., Adsorption, surface area and porosity, (1982), Academic Press London
[25] Hassanizadeh, S.M.; Gray, W.G., General conservation equations for multi-phase systems: 1. averaging procedure, Adv. water resour., 2, 131-144, (1979)
[26] Hassanizadeh, S.M.; Gray, W.G., General conservation equations for multi-phase systems: 2. mass, momenta, energy and entropy equations, Adv. water resour., 2, 191-203, (1979)
[27] Hassanizadeh, S.M.; Gray, W.G., General conservation equations for multi-phase systems: 3. constitutive theory for porous media flow, Adv. water resour., 3, 25-40, (1980)
[28] Kachanov, M.D., Time of rupture process under creep conditions, Izvest. akad. nauk, 8, 26-31, (1958), (in Russian)
[29] Khoury, G.A.; Majorana, C.E.; Pesavento, F.; Schrefler, B.A., Modelling of heated concrete, Mag. concr. res., 54, 1-25, (2002)
[30] Lewis, R.W.; Schrefler, B.A., The finite element method in the static and dynamic deformation and consolidation of porous media, (1998), Wiley & Sons Chichester · Zbl 0935.74004
[31] J. Mazars, Application de la mecanique de l’ endommagement au comportament non lineaire et la rupture du beton de structure, Thèse de Doctorat d’ Etat, L.M.T., Universite de Paris, France, 1984
[32] Mazars, J., Description of the behaviour of composite concretes under complex loadings through continuum damage mechanics, ()
[33] W. Nechnech, J.M. Reynouard, F. Meftah, On modelling of thermo-mechanical concrete for the finite element analysis of structures submitted to elevated temperatures, in: R. de Borst, J. Mazars, G. Pijaudier-Cabot, J.G.M. van Mier, (Eds.), Proceedings of Fracture Mechanics of Concrete Structures, Swets & Zeitlinger, Lisse, 2001, pp. 271-278
[34] Nochetto, R.H.; Paolini, M.; Verdi, C., An adaptive finite element method for two-phase Stefan problems in two space variables, Math. comput., 78-108, (1991) · Zbl 0733.65087
[35] F. Pesavento, Non-linear modelling of concrete as multiphase porous material in high temperature conditions, Ph.D. thesis, University of Padova, Padova, 2000
[36] Pijaudier, J., Cabot, non-local damage, (), 105-143, Chapter 4 · Zbl 0900.73625
[37] L.T. Phan, N.J. Carino, D. Duthinh, E. Garboczi, (Eds.), Proceedings of the International Workshop on Fire Performance of High-Strength Concrete, NIST, Gaithersburg, 1997
[38] Phan, L.T.; Lawson, J.R.; Davis, F.L., Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete, Mater. struct., 34, March, 83-91, (2001)
[39] Picasso, M., An adaptive finite element algorithm for a two-dimensional stationary Stefan-like problem, Comput. methods appl. mech. engrg., 124, 213-230, (1995) · Zbl 0945.65519
[40] Scheidegger, A.E., The physics of flow through porous media, (1960), University of Toronto Press Toronto · Zbl 0087.21204
[41] Schrefler, B.A.; Gawin, D., The effective stress principle: incremental or finite form?, Int. J. numer. anal. methods geomech., 20, 785-815, (1996)
[42] Schrefler, B.A., Mechanics and thermodynamics of saturated – unsaturated porous materials and quantitative solutions, Appl. mech. rev., 55, 4, 351-388, (2002), (ASME International, New York)
[43] Ulm, F.-J.; Acker, P.; Levy, M., The “chunnel” fire. II. analysis of concrete damage, J. engrg. mech. ASCE, 125, 3, 283-289, (1999)
[44] Ulm, F.-J.; Coussy, O.; Bazant, Z., The “chunnel” fire. I. chemoplastic softening in rapidly heated concrete, J. engrg. mech. ASCE, 125, 3, 272-282, (1999)
[45] Zienkiewicz, O.C.; Taylor, R.L., ()
[46] Zienkiewicz, O.C.; Taylor, R.L., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.