×

zbMATH — the first resource for mathematics

Efficiency and Henig efficiency for vector equilibrium problems. (English) Zbl 1033.90119
Summary: We introduce the concept of Henig efficiency for vector equilibrium problems, and extend scalarization results from vector optimization problems to vector equilibrium problems. Using these scalarization results, we discuss the existence of the efficient solutions and the connectedness of the set of Henig efficient solutions to the vector-valued Hartman-Stampacchia variational inequality.

MSC:
90C29 Multi-objective and goal programming
90C48 Programming in abstract spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Borwein, J. M., and Zhuang, D., Superefficiency in Vector Optimization, Transactions of the American Mathematical Society, Vol. 338, pp. 105–122, 1993. · Zbl 0796.90045 · doi:10.1090/S0002-9947-1993-1098432-5
[2] Gong, X. H., Connectedness of Efficient Solution Sets for Set-Valued Maps in Normed Spaces, Journal of Optimization Theory and Applications, Vol. 83, pp. 83–96, 1994. · Zbl 0845.90104 · doi:10.1007/BF02191763
[3] Giannessi, F., Theorem of the Alternative, Quadratic Programs, and Complementarity Problems, Variational Inequalities and Complementarity Problems, Edited by R. W. Cottle, F. Giannessi, and J. L. Lions, Wiley, New York, NY, pp. 151–186, 1980.
[4] Chen, G. Y., and Cheng, G. M., Vector Variational Inequalities and Vector Optimization, Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Heidelberg, Germany, Vol. 258, pp. 408–416, 1987.
[5] Chen, G. Y., and Yang, X. Q., Vector Complementarity Problem and Its Equivalence with Weak Minimal Element in Ordered Spaces, Journal of Mathematical Analysis and Applications, Vol. 153, pp. 136–158, 1990. · Zbl 0712.90083 · doi:10.1016/0022-247X(90)90223-3
[6] Chen, G. Y., and Craven, B. D., A Vector Variational Inequality and Optimization over an Efficient Set, Zeitschrift für Operations Research, Vol. 34, pp. 1–12, 1990. · Zbl 0693.90091
[7] Chen, G. Y., Existence of Solution for a Vector Variational Inequality: An Extension of the Hartman-Stampacchia Theorem, Journal of Optimization Theory and Applications, Vol. 74, pp. 445–456, 1992. · Zbl 0795.49010 · doi:10.1007/BF00940320
[8] Yang, X. Q., Vector Variational Inequality and Its Duality, Nonlinear Analysis; Theory, Methods, and Applications, Vol. 21, pp. 869–877, 1993. · Zbl 0809.49009 · doi:10.1016/0362-546X(93)90052-T
[9] Chen, G. Y., and Li, S. J., Existence of Solutions for a Generalized Vector Quasivariational Inequality, Journal of Optimization Theory and Applications, Vol. 90, pp. 321–334, 1996. · Zbl 0869.49005 · doi:10.1007/BF02190001
[10] Siddiqi, A. H., Ansari, Q. H., and Khaliq, A., On Vector Variational Inequalities, Journal of Optimization Theory and Applications, Vol. 84, pp. 171–180, 1995. · Zbl 0827.47050 · doi:10.1007/BF02191741
[11] Yu, S. J., and Yao, J. C., On Vector Variational Inequalities, Journal of Optimization Theory and Applications, Vol. 89, pp. 749–769, 1996. · Zbl 0848.49012 · doi:10.1007/BF02275358
[12] Lee, G. M., Lee, B. S., and Chang, S. S., On Vector Quasivariational Inequalities, Journal of Mathematical Analysis and Applications, Vol. 203, pp. 626–638, 1996. · Zbl 0866.49016 · doi:10.1006/jmaa.1996.0401
[13] Lin, K. L., Yang, D. P., and Yao, J. C., Generalized Vector Variational Inequalities, Journal of Optimization Theory and Applications, Vol. 92, pp. 117–125, 1997. · Zbl 0886.90157 · doi:10.1023/A:1022640130410
[14] Daniilidis, A., and Hadjisavvas, N., Existence Theorems for Vector Variational Inequalities, Bulletin of the Australian Mathematical Society, Vol. 54, pp. 473–481, 1996. · Zbl 0887.49004 · doi:10.1017/S0004972700021882
[15] Bianchi, M., Hadjisavvas, N., and Schaible, S., Vector Equilibrium Problems with Generalized Monotone Bifunctions, Journal of Optimization Theory and Applications, Vol. 92, pp. 527–542, 1997. · Zbl 0878.49007 · doi:10.1023/A:1022603406244
[16] Jahn, J., Mathematical Vector Optimization in Partially-Ordered Linear Spaces, Peter Lang, Frankfurt am Main, Germany, 1986. · Zbl 0578.90048
[17] Fu, W. T., and Chen, X. Q., Family of Dilating Cones and Strictly Efficient Solutions, Acta Mathematics Sinica, Vol. 40, pp. 933–938, 1997 (in Chinese). · Zbl 0906.90154
[18] Fu, W. T., On Strictly Efficient Points of a Set in a Normed Linear Space, Journal of Systems Science and Mathematical Sciences, Vol. 17, pp. 324–329, 1997 (in Chinese). · Zbl 0918.46019
[19] Luc, D. T., Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, Springer Verlag, New York, NY, Vol. 319, 1989.
[20] Lassonde, M., On the Use of KKM Multifunctions in Fixed-Point Theory and Related Topics, Journal of Mathematical Analysis and Applications, Vol. 97, pp. 151–201, 1983. · Zbl 0527.47037 · doi:10.1016/0022-247X(83)90244-5
[21] Aubin, J. P., and Ekeland, I., Applied Nonlinear Analysis, John Wiley, New York, NY, 1984. · Zbl 0641.47066
[22] Warburton, A. R., Quasiconcave Vector Maximization: Connectedness of the Sets of Pareto-Optimal and Weak Pareto-Optimal Alternatives, Journal of Optimization Theory and Applications, Vol. 40, pp. 537–557, 1983. · Zbl 0496.90073 · doi:10.1007/BF00933970
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.