zbMATH — the first resource for mathematics

Completely monotonic functions. (English) Zbl 1035.26012
The paper deals with completely monotonic functions \(f(x)\) defined on \((0,+\infty)\) and possessing derivatives \(f^{(n)}(x)\) for all \(n=0,1,2,\dots \) such that \((-1)^{n}f^{(n)}(x)\geq 0\) for all \(x\geq 0\). Conditions are given when arithmetic operations, compositions and power series of functions and integral transforms with general kernel yield the completely monotonic functions. The results obtained are applied to establish the complete monotonicity for the confluent and Gauss hypergeometric functions, for functions of Bessel and Mittag-Leffler type, and for the one-dimensional Laplace, Stieltjes, Lambert and Meijer integral transforms.

26A48 Monotonic functions, generalizations
33E12 Mittag-Leffler functions and generalizations
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
33C15 Confluent hypergeometric functions, Whittaker functions, \({}_1F_1\)
33C05 Classical hypergeometric functions, \({}_2F_1\)
44A10 Laplace transform
44A15 Special integral transforms (Legendre, Hilbert, etc.)
Full Text: DOI
[1] Feller W., John Wiley and Sons (1971)
[2] Gradstein I.S., Sums, Series and Products (1994)
[3] DOI: 10.1007/BF00533993 · Zbl 0319.60008 · doi:10.1007/BF00533993
[4] DOI: 10.1214/aop/1176995766 · Zbl 0369.60023 · doi:10.1214/aop/1176995766
[5] DOI: 10.1017/S0305004100055912 · Zbl 0396.60021 · doi:10.1017/S0305004100055912
[6] DOI: 10.1090/S0002-9939-1982-0652449-9 · doi:10.1090/S0002-9939-1982-0652449-9
[7] DOI: 10.1080/10652469608819121 · Zbl 0876.26007 · doi:10.1080/10652469608819121
[8] DOI: 10.1017/S0013091500011706 · Zbl 0173.14202 · doi:10.1017/S0013091500011706
[9] Magnus W., Springer-Verlag 15 (1996)
[10] Miller K.S., John Wiley and Sons 15 (1993)
[11] Miller K.S., Real Anal. Exchange 23 pp 753– (1997)
[12] DOI: 10.1090/S0002-9904-1948-09132-7 · Zbl 0033.35902 · doi:10.1090/S0002-9904-1948-09132-7
[13] DOI: 10.1080/10652469808819189 · Zbl 0933.26001 · doi:10.1080/10652469808819189
[14] Samko S.G., Theory and Applications (1993)
[15] Schneider W.R., Expo. Math. 14 pp 3– (1996)
[16] Widder D.V., Princeton University Press 14 (1941)
[17] I. Zayed Ahmed, CRC Press, Inc. 14 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.