zbMATH — the first resource for mathematics

Maximum likelihood estimation of hidden Markov processes. (English) Zbl 1035.62084
Summary: We consider the process \(dY_t=u_t dt+dW_t\), where \(u\) is a process not necessarily adapted to \({\mathcal F}^Y\) (the filtration generated by the process \(Y)\) and \(W\) is a Brownian motion. We obtain a general representation for the likelihood ratio of the law of the \(Y\) process relative to a Brownian measure. This representation involves only one basic filter (expectation of \(u\) conditional on the observed process \(Y)\). This generalizes a result of T. Kailath and M. Zakai [Ann. Math. Stat. 42, 130–140 (1971; Zbl 0226.60061)] where it is assumed that the process \(u\) is adapted to \({\mathcal F}^Y\).
In particular, we consider the model in which \(u\) is a functional of \(Y\) and of a random element \(X\) which is independent of the Brownian motion \(W\). For example, \(X\) could be a diffusion or a Markov chain. This result can be applied to the estimation of an unknown multidimensional parameter \(\theta\) appearing in the dynamics of the process \(u\) based on continuous observation of \(Y\) on the time interval \([0,T]\).
For a specific hidden diffusion financial model in which \(u\) is an unobserved mean-reverting diffusion, we give an explicit form for the likelihood function of \(\theta\). For this model we also develop a computationally explicit E-M algorithm for the estimation of \(\theta\). In contrast to the likelihood ratio, the algorithm involves evaluation of a number of filtered integrals in addition to the basic filter.

62M05 Markov processes: estimation; hidden Markov models
60J60 Diffusion processes
60J25 Continuous-time Markov processes on general state spaces
Full Text: DOI
[1] Bielecki, T. R. and Pliska, S. R. (1999). Risk sensitive dynamic asset management. J. Appl. Math. Optim. 39 337–360. · Zbl 0984.91047 · doi:10.1007/s002459900110
[2] Dembo, A. and Zeitouni, O. (1986). Parameter estimation of partially observed continuous time stochastic processes. Stochastic Process. Appl. 23 91–113. · Zbl 0608.62095 · doi:10.1016/0304-4149(86)90018-9
[3] Elliott, R. J., Aggoun, L. P. and Moore, J. B. (1997). Hidden Markov Models . Springer, Berlin. · Zbl 0819.60045
[4] Feygin, P. D. (1976). Maximum likelihood estimation for continuous-time stochastic processes. Adv. in Appl. Probab. 8 712–736. · Zbl 0355.62086 · doi:10.2307/1425931
[5] Haugh, M. B. and Lo, A. W. (2001). Asset allocation and derivatives. Quant. Finance 1 45–72. · doi:10.1088/1469-7688/1/1/303
[6] Kailath, T. and Zakai, M. (1971). Absolute continuity and Radon–Nikodym derivatives for certain measures relative to Wiener measure. Ann. Math. Statist. 42 130–140. · Zbl 0226.60061 · doi:10.1214/aoms/1177693500
[7] Kallianpur, G. (1980). Stochastic Filtering Theory. Springer, New York. · Zbl 0458.60001
[8] Kallianpur, G. and Selukar, R. S. (1991). Parameter estimation in linear filtering. J. Multivariate Anal. 39 284–304. · Zbl 0768.62086 · doi:10.1016/0047-259X(91)90102-8
[9] Karatzas, I. and Shreve, S. E. (1988). Brownian Motion and Stochastic Calculus . Springer, New York. · Zbl 0638.60065
[10] Kim, T. and Omberg, E. (1996). Dynamic nonmyopic portfolio behavior. Rev. Financial Studies 9 141–161.
[11] Kutoyants, Y. A. (1984). Parameter Estimation for Stochastic Processes . Helderman, Berlin. · Zbl 0542.62073
[12] Lakner, P. (1998). Optimal trading strategy for an investor: The case of partial information. Stochastic Process. Appl. 76 77–97. · Zbl 0934.91021 · doi:10.1016/S0304-4149(98)00032-5
[13] Lipster, R. S. and Shiryayev, A. N. (1977). Statistics of Random Processes 1 . Springer, New York.
[14] Lipster, R. S. and Shiryayev, A. N. (1978). Statistics of Random Processes 2 . Springer, New York.
[15] Protter, P. (1990). Stochastic Integration and Differential Equations . Springer, New York. · Zbl 0694.60047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.