×

On positive solutions of boundary value problems for second-order functional differential equations on infinite intervals. (English) Zbl 1036.34075

The authors study the functional boundary value problem \[ \begin{gathered} x''(t)- px'(t)- qx(t)+ f(t, x_t, x_t')= 0,\quad t\geq 0,\\ \alpha x(t)-\beta x'(t)= \xi(t),\quad -\tau\leq t\leq t0,\quad \lim_{t\to\infty}\, x(t)= 0,\end{gathered} \] with \(p,\alpha,\beta\in [0,\infty)\), \(\alpha^2+ \beta^2> 0\), \(q> 0\) and \(x_t(\theta)= x(t+ \theta)\) for \(\theta\in [-\tau, 0]\). They give conditions for the existence of positive solutions to the above problem. Existence results are proved by a fixed-point theorem on cones.

MSC:

34K10 Boundary value problems for functional-differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Henderson, J., Boundary value problems for functional differential equations, (1995), World Scientific
[2] Ntouyas, S.K.; Sficas, Y.G.; Tsamatos, P.Ch., An existence principle for boundary value problems for second order functional differential equations, Nonlinear anal., 20, 215-222, (1993) · Zbl 0774.34052
[3] Erbe, L.H.; Kong, Q.K., Boundary value problems for singular second-order functional differential equations, J. comput. math. appl., 53, 377-388, (1994) · Zbl 0816.34046
[4] Ntouyas, S.K., Initial and boundary value problems for functional differential equations via the topological transversality method: A survey, Bull. Greek math. soc., 40, 3-41, (1998) · Zbl 0919.34059
[5] Hong, C.H.; Yeh, C.C.; Lee, C.F.; Hsiang, F.; Wong, F.H., Existence of positive solutions for functional differential equations, Comput. math. appl., 40, 783-792, (2000) · Zbl 0960.34054
[6] Zima, M., On positive solution of boundary value problems on the half-line, J. math. anal. appl., 259, 127-136, (2001) · Zbl 1003.34024
[7] Guo, D.; Lakshmikantham, V., Nonlinear problems in abstract cones, (1988), Academic Press New York · Zbl 0661.47045
[8] Bielecki, A., Une remarque sur la méthode de banach – caccipoli – tichonov dans la théorie des équations différentielles ordinaires, Bull. acad. polon. sci., 4, 261-264, (1956) · Zbl 0070.08103
[9] Zima, K., Sur 1’existence des solutions d’une équation intégro-différentielle, Ann. polon. math., 27, 181-187, (1973) · Zbl 0257.45009
[10] Zima, M., On a certain boundary value problem, Comment. math. prace mat., 29, 331-340, (1990) · Zbl 0724.34029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.