Droniou, J.; Gallouët, T.; Vovelle, J. Global solution and smoothing effect for a non-local regularization of a hyperbolic equation. (English) Zbl 1036.35123 J. Evol. Equ. 3, No. 3, 499-521 (2003). The authors study the Cauchy problem for the equation \(u_t+f(u)_x+g(u)=0\), where \(f\in C^{\infty} (\mathbb{R})\), \(g\in L^{\infty }(\mathbb{R})\), \(g\) is a non-local operator defined through the Fourier transform \(F(g(u))(p)=| p| ^{\lambda }F(u)(p)\) with \(\lambda \in (1,2\rangle \). The existence and uniqueness of a weak solution, the regularizing effect and the maximum principle is proved. Reviewer: Marie Kopáčková (Praha) Cited in 51 Documents MSC: 35L60 First-order nonlinear hyperbolic equations 35B40 Asymptotic behavior of solutions to PDEs 35B35 Stability in context of PDEs 35D05 Existence of generalized solutions of PDE (MSC2000) 35L45 Initial value problems for first-order hyperbolic systems Keywords:Cauchy problem; parabolic regularization; weak solution PDF BibTeX XML Cite \textit{J. Droniou} et al., J. Evol. Equ. 3, No. 3, 499--521 (2003; Zbl 1036.35123) Full Text: DOI HAL OpenURL