zbMATH — the first resource for mathematics

First passage times of a jump diffusion process. (English) Zbl 1037.60073
The jump diffusion process \[ X_t=\sigma W_t+\mu t+\sum_{i=1}^{N_t} Y_i, \quad X_0=0, \] is considered where \(W\) is a standard Brownian motion, \(N\) is a Poisson process with rate \(\lambda\), \(\sigma\) and \(\mu\) are positive constants. The i.i.d. r.v.s \((Y_i)_{i\geq 1}\) have a double exponential distribution given by the density \[ f_Y(y)=p\cdot\eta_1 e^{-\eta_1 y}\mathbf{1}_{\{y\geq 0\}}+ q\cdot\eta_2 e^{-| \eta_2| y}\mathbf{1}_{\{y< 0\}}, \] \(p,q\geq 0\), \(p+q=1\), \(\eta_1,\eta_2>0\). The authors derive the closed-form formulae for the Laplace transform of the first passage time \(\tau_b=\inf\{t\geq 0: X_t\geq b\}\), \(b>0\), as well as for \(\mathbf{E}[e^{-\alpha \tau_b}\mathbf{1}_{\{X_{\tau_b}-b>y\}}]\) and \(\mathbf{E}[e^{-\alpha \tau_b}\mathbf{1}_{\{X_{\tau_b}-b=y\}}]\), \(y\geq 0\). Connections with renewal-type equations are discussed. The Laplace transform of the joint law of \(X_t\) and \(\max_{0\leq s\leq t}X_s\) is obtained in terms of special functions. The Gaver-Stehfest algorithm for the numerical inversion of Laplace transforms is tested.

60J75 Jump processes (MSC2010)
44A10 Laplace transform
60J27 Continuous-time Markov processes on discrete state spaces
60G51 Processes with independent increments; Lévy processes
Full Text: DOI
[1] Abate, J. and Whitt, W. (1992). The Fourier-series method for inverting transforms of probability distributions. Queueing Systems 10, 5–88. · Zbl 0749.60013 · doi:10.1007/BF01158520
[2] Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions. National Bureau of Standards, Washington, DC. · Zbl 0543.33001
[3] Asmussen, S., Glynn, P. and Pitman, J. (1995). Discretization error in simulation of one-dimensional reflecting Brownian motion. Ann. Appl. Prob. 5, 875–896. · Zbl 0853.65147 · doi:10.1214/aoap/1177004597
[4] Bateman, H. (1953). Higher Transcendental Functions , Vol. 2. McGraw-Hill, New York. · Zbl 0051.34703
[5] Bateman, H. (1954). Tables of Integral Transforms , Vol. 1. McGraw-Hill, New York. · Zbl 0055.27503
[6] Bertoin, J. (1996). Lévy Processes . Cambridge University Press. · Zbl 0861.60003
[7] Bingham, N. H. (1975). Fluctuation theory in continuous time. Adv. Appl. Prob. 7, 705–766. · Zbl 0322.60068 · doi:10.2307/1426397
[8] Boyarchenko, S. and Levendorskiĭ, S. (2002). Barrier options and touch-and-out options under regular Lévy processes of exponential type. Ann. Appl. Prob. 12, 1261–1298. · Zbl 1015.60036 · doi:10.1214/aoap/1037125863
[9] Brémaud, P. (1981). Point Processes and Queues: Martingale Dynamics. Springer, New York.
[10] Duffie, D. (1995). Dynamic Asset Pricing Theory , 2nd edn. Princeton University Press. · Zbl 1140.91041
[11] Gerber, H. and Landry, B. (1998). On the discounted penalty at ruin in a jump-diffusion and the perpetual put option. Insurance Math. Econom. 22, 263–276. · Zbl 0924.60075 · doi:10.1016/S0167-6687(98)00014-6
[12] Glasserman, P. and Kou, S. G. (2003). The term structure of simple forward rates with jump risk. To appear in Math. Finance . · Zbl 1087.91024 · doi:10.1111/1467-9965.00021
[13] Hull, J. C. (1999). Options, Futures, and Other Derivative Securities , 4th edn. Prentice-Hall, Englewood Cliffs, NJ.
[14] Ikeda, N. and Watanabe, S. (1962). On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ. 2, 79–95. · Zbl 0118.13401
[15] Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, Berlin. · Zbl 0635.60021 · doi:10.1016/0304-4149(87)90050-0
[16] Karatzas, I. and Shreve, S. (1991). Brownian Motion and Stochastic Calculus. Springer, New York. · Zbl 0734.60060
[17] Karlin, S. and Taylor, H. (1975). A First Course in Stochastic Processes , 2nd edn. Academic Press, New York. · Zbl 0315.60016
[18] Kou, S. G. (2002). A jump diffusion model for option pricing. Manag. Sci. 48, 1086–1101. · Zbl 1216.91039 · doi:10.1287/mnsc.48.8.1086.166
[19] Kou, S. G. and Wang, H. (2001). Option pricing under a double exponential jump diffusion model. Preprint, Columbia University and Brown University.
[20] Merton, R. C. (1976). Option pricing when the underlying stock returns are discontinuous. J. Financial Econom. 3, 115–144. · Zbl 1131.91344 · doi:10.1016/0304-405X(76)90022-2
[21] Pecherskii, E. A. and Rogozin, B. A. (1969). On joint distributions of random variables associated with fluctuations of a process with independent increment. Theory Prob. Appl. 15, 410–423.
[22] Pitman, J. W. (1981). Lévy system and path decompositions. In Seminar on Stochastic Processes (Evanston, IL, 1981), Birkhäuser, Boston, MA, pp. 79–110. · Zbl 0518.60077
[23] Protter, P. (1990). Stochastic Integration and Differential Equations. A New Approach (Appl. Math. 21 ). Springer, Berlin. · Zbl 0694.60047
[24] Rogers, L. C. G. (2000). Evaluating first-passage probabilities for spectrally one-sided Lévy processes. J. Appl. Prob. 37, 1173–1180. · Zbl 0981.60048 · doi:10.1239/jap/1014843099
[25] Rogozin, B. A. (1966). On the distribution of functionals related to boundary problems for processes with independent increments. Theory Prob. Appl. 11, 580–591. · Zbl 0178.52701 · doi:10.1137/1111062
[26] Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press. · Zbl 0973.60001
[27] Siegmund, D. (1985). Sequential Analysis. Springer, New York. · Zbl 0573.62071
[28] Weil, M. (1971). Conditionnement par rapport au passé strict. In Séminaire de Probabilités V, Université de Strasbourg, année universitaire 1969–1970 (Lecture Notes Math. 191 ). Springer, Berlin, pp. 362–372.
[29] Woodroofe, M. (1982). Nonlinear Renewal Theory in Sequential Analysis (CBMS-NSF Regional Conf. Ser. Appl. Math. 39 ). SIAM, Philadelphia, PA. · Zbl 0487.62062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.