×

zbMATH — the first resource for mathematics

Black hole remnants and dark matter. (English) Zbl 1037.83006
Summary: We argue that, when the gravity effect is included, the generalized uncertainty principle (CUP) may prevent black holes from total evaporation in a similar way that the standard uncertainty principle prevents the hydrogen atom from total collapse. Specifically we invoke the GUP to obtain a modified Hawking temperature, which indicates that there should exist non-radiating remnants (BHR) of about Planck mass. BHRs are an attractive candidate for cold dark matter. We investigate an alternative cosmology in which primordial BHRs are the primary source of dark matter.

MSC:
83C57 Black holes
83C45 Quantization of the gravitational field
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bekenstein, J.D.; Bekenstein, J.D., Phys. rev. D, Lettere al nuovo cimento, 4, 737, (1972)
[2] Hawking, S.W., Comm. math. phys., 43, 199, (1974)
[3] Parikh, M.K.; Wilczek, F., Phys. rev. lett., 85, 5042, (2000), and references therein
[4] L. Susskind, private communications (2001)
[5] Adler, R.J.; Chen, P.; Santiago, D., Gen. rel. grav., 33, 12, 2101, (2001), arXiv: grgc/0106080
[6] Veneziano, G.; Witten, E., Europhys. lett., Phys. today, 2, 199, (1996)
[7] Adler, R.J.; Santiago, D.I., Mod. phys. lett., A14, 1371, (1999)
[8] Maggiore, M.; Scardigli, F., Phys. lett., Phys. lett., B452, 39, (1999)
[9] Shankar, R., Principles of quantum mechanics, (), 241 · Zbl 0893.00007
[10] Hanni, R.S.; Ruffini, R.; Adler, R.J.; Das, T.K., (), Phys. rev., 14 4, 2474, (1976)
[11] MacGibbon, J.H.; Barrow, J.D.; Copeland, E.J.; Liddle, A.R.; Carr, B.J.; Gilbert, J.H.; Lidsey, J.E., Nature, Phys. rev., Phys. rev., 50 0, 4853, (1994)
[12] (), 1-331, See, for example
[13] Gross, D.J.; Perry, M.J.; Jaffe, L.G., Phys. rev., 25 5, 330, (1982)
[14] Kapusta, J.I., Phys. rev., 30 0, 831, (1984)
[15] Ohanian, H.; Ruffini, R., Gravitation and spacetime, (), 481
[16] Hartle, J.B.; Hawking, S.W., Phys. rev., 28 8, 2960, (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.