zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions. (English) Zbl 1038.65114
Summary: The present work is devoted to the a posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions. Using the duality technique we derive a reliable and efficient a posteriori error estimator that measures the error in the energy norm. The estimator can be used in assessing the error of any approximate solution which belongs to the Sobolev space $H^1$, independently of the discretization method chosen. Only two global constants appear in the definition of the estimator; both constants depend solely on the domain geometry, and the estimator is quite nonsensitive to the error in the constants evaluation. It is also shown how accurately the estimator captures the local error distribution, thus, creating a base for a justified adaptivity of an approximation.

65N15Error bounds (BVP of PDE)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
35J05Laplacian operator, reduced wave equation (Helmholtz equation), Poisson equation
Full Text: DOI
[1] Ainsworth, M.; Oden, J. T.: A posteriori error estimation in finite element analysis. (2000) · Zbl 1008.65076
[2] Angot, Ph.: Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows. Math. meth. Appl. sci. 22, 1395-1412 (1999) · Zbl 0937.35129
[3] Babuška, I.; Strouboulis, T.: The finite element method and its reliability. (2001) · Zbl 0995.65501
[4] Becker, R.; Rannacher, R.: A feed-back approach to error control in finite element methodsbasic analysis and examples. East-west J. Numer. math. 4, No. 4, 237-264 (1996) · Zbl 0868.65076
[5] C. Carstensen, S.A. Sauter, A posteriori error analysis for elliptic PDEs on domains with complicated structures, Numer. Math., to appear. · Zbl 1049.65120
[6] Ekeland, I.; Temam, R.: Convex analysis and variational problems. (1976) · Zbl 0322.90046
[7] Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C.: Introduction to adaptive methods for differential equations. Acta numer. 4, 105-158 (1995) · Zbl 0829.65122
[8] Glowinski, R.; Pan, T. -W.; Hesla, T. I.; Joseph, D. D.; Periaux, J.: A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodiesapplication to particulate flow. Comput. methods appl. Mech. eng. 184, No. 2--4, 241-267 (2000) · Zbl 0970.76057
[9] Ladyzhenskaya, O. A.: The mathematical theory of viscous incompressible flow. (1963) · Zbl 0121.42701
[10] Repin, S. I.: A posteriori error estimation for nonlinear variational problems by duality theory. Zap. nauchn. Sem. V.A. Stekov math. Inst. (POMI) 243, 201-214 (1997) · Zbl 0904.65064
[11] Repin, S. I.: A posteriori error estimation for variational problems with uniformly convex functionals. Math. comp. 69, No. 230, 481-500 (2000) · Zbl 0949.65070
[12] S.I. Repin, S.A. Sauter, A.A. Smolianski, A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions, Computing, to appear. · Zbl 1128.35319
[13] Strang, G.; Fix, G. J.: An analysis of the finite element method. (1973) · Zbl 0356.65096
[14] Verfürth, R.: A review of A posteriori error estimation and adaptive mesh-refinement techniques. (1996) · Zbl 0853.65108