×

zbMATH — the first resource for mathematics

Some approximation theorems via statistical convergence. (English) Zbl 1039.41018
Summary: We prove some Korovkin and Weierstrass type approximation theorems via statistical convergence. We are also concerned with the order of statistical convergence of a sequence of positive linear operators.

MSC:
41A36 Approximation by positive operators
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] F. Altomare and M. Campiti, Korovkin type approximation theory and its applications , Walter de Gruyter Publ., Berlin, 1994. · Zbl 0924.41001
[2] J. Connor, The statistical and strong \(p\)-Cesaro convergence of sequences , Analysis 8 (1988), 47-63. · Zbl 0653.40001
[3] P. Erdös and G. Jenenbaüm, Sur les densities de certaines suites d’entiers , Proc. London Math. Soc. (3) 59 (1989), 417-438. · Zbl 0694.10040
[4] H. Fast, Sur la convergence statistique , Colloq. Math. 2 (1951), 241-244. · Zbl 0044.33605
[5] J.A. Fridy, On statistical convergence , Analysis 5 (1985), 301-313. · Zbl 0588.40001
[6] J.A. Fridy and C. Orhan, Lacunary statistical summability , J. Math. Anal. Appl. 173 (1993), 497-504. · Zbl 0786.40004
[7] J.A. Fridy and M.K. Khan, Tauberian theorems via statistical convergence , J. Math. Anal. Appl. 228 (1998), 73-95. · Zbl 0919.40006
[8] A.D. Gadžiev, The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P.P. Korovkin , Soviet Math. Dokl. 15 (1974), 1433-1436. · Zbl 0312.41013
[9] P.P. Korovkin, Linear operators and the theory of approximation , India, Delhi, 1960. · Zbl 0107.05302
[10] H.I. Miller, A measure theoretical subsequence characterization of statistical convergence , Trans. Amer. Math. Soc. 347 (1995), 1811-1819. JSTOR: · Zbl 0830.40002
[11] S. Pehlivan and M.A. Mamedov, Statistical cluster points and turnpike , Optimization 48 (2000), 93-106. · Zbl 0963.40002
[12] T. Salat, On statistically convergent sequences of real numbers , Math. Slovaca 30 (1980), 139-150. · Zbl 0437.40003
[13] I.J. Schoenberg, The integrability of certain functions and related summability methods , Amer. Math. Monthly 66 (1959), 361-375. JSTOR: · Zbl 0089.04002
[14] A. Zygmund, Trigonometric series , 2nd ed., Cambridge University Press, Cambridge, 1979. · JFM 58.0296.09
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.