×

zbMATH — the first resource for mathematics

Solution of Volterra integrodifferential equations with generalized Mittag-Leffler function in the Kernels. (English) Zbl 1041.45011
Summary: The present paper is intended for the investigation of the integro-differential equation of the form \[ ({\mathcal D}^\alpha_{a+} y)(x)= \lambda \int^x_a(x-t)^{\mu-1} E^\gamma_{\rho,\mu} \bigl[\omega(x-t)^\rho\bigr] y(t)dt +f(x),\quad a<x\leq b, \tag{*} \] with complex \(\alpha, \rho,\mu, \gamma\) and \(\omega\) \((\text{Re}(\alpha), \text{Re} (\rho), \text{Re} (\mu)>0)\) in the space of summable functions \(L(a,b)\) on a finite interval \([a,b]\) of the real axis. Here \({\mathcal D}^\alpha_{a+}\) is the operator of the Riemann-Liouville fractional derivative of complex order \(\alpha(\text{Re} (\alpha)>0)\) and \(E^\gamma_{\rho,\mu} (z)\) is the function defined by \[ E^\gamma_{\rho,\mu} (z)= \sum^\infty_{k=0} \frac{( \gamma)_k} {\Gamma(\rho k+\mu)} \frac {z^k}{k!}, \] where, when \(\gamma=1\), \(E^1_{ \rho, \mu}(z)\) coincides with the classical Mittag-Leffler function \(E_{\rho, \mu}(z)\), and in particular \(E_{1,1}(z) =e^z\). Thus, when \(f(x)\equiv 0\), \(a=0\), \(\alpha=1\), \(\mu=1\), \(\gamma=0\), \(\rho=1\), \(\lambda= -i\pi g\), \(\omega =i\nu\), \(g\) and \(\nu\) are real numbers, the equation (*) describes the unsaturated behavior of the free electron laser.
The Cauchy-type problem for the above integro-differential equation is considered. It is proved that such a problem is equivalent to the Volterra integral equation of the second kind, and its solution in closed form is established. Special cases are investigated.

MSC:
45J05 Integro-ordinary differential equations
26A33 Fractional derivatives and integrals
33E12 Mittag-Leffler functions and generalizations
45D05 Volterra integral equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A.H. Al-Shammery, S.L. Kalla and H.G. Khajah, A fractional generalization of the free electron laser equation , Frac. Calc. Appl. Anal. 2 (1999), 501-508. · Zbl 1033.65118
[2] ——–, On a generalized fractional integro-differential equation of Volterra-type , Integral Transform. Spec. Funct. 9 (2000), 81-90. · Zbl 0962.45002
[3] L. Boyadjiev and H.-J. Dobner, On the solution of fractional integro-differential equation of Volterra type , Frac. Calc. Appl. Anal. 1 (1998), 385-400. · Zbl 1033.45005
[4] ——–, Analytical and numerical treatment of a multidimensional fractional FEL equation , Appl. Anal. 70 (1998), 1-18. · Zbl 1020.65101
[5] L. Boyadjiev, H.-J. Dobner and S.L. Kalla, A fractional integro-differential equation of Volterra type , Math. Comput. Modelling 28 (1998), 103-113. · Zbl 0993.65153
[6] L. Boyadjiev and S.L. Kalla, Series representations of analytic functions and applications , Frac. Calc. Appl. Anal. 1 (2001), 379-408. · Zbl 1033.30002
[7] L. Boyadjiev, S.L. Kalla and H.G. Khajah, Analytical and numerical treatment of a fractional integro-differential equation of Volterra type , Math. Comput. Modelling 25 (1997), 1-9. · Zbl 0932.45012
[8] G. Dattoli, L. Gianessi, L. Mezi, D. Tocci and R. Colai, FEL time-evolution operator , Nucl. Instr. Methods A 304 (1991), 541-544.
[9] G. Dattoli, S. Lorezutta, G. Maino, D. Tocci and A. Torre, Results for an integro-differential equation arising in a radiation evolution problem , in Proc. Internat. Workshop on Dynamics of Transport in Plasmas and Charged Beams (Torino, July 1994), World Scientific, Singapore, 1995, pp. 202-221.
[10] G. Dattoli, S. Lorezutta, G. Maino and A. Torre, Analytic treatment of the high-gain free electron laser equation , Radiat. Phys. Chem. 48 (1996), 29-40.
[11] M.M. Dzherbashyan, Integral transforms and representations of functions in complex domain , Nauka, Moscow, 1966. (Russian)
[12] ——–, Harmonic analysis and boundary value problems in the complex domain , Birkhauser Verlag, Basel, 1993. · Zbl 0798.43001
[13] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher transcendental functions , Vol. I, McGraw-Hill, New York, 1953. · Zbl 0052.29502
[14] ——–, Higher transcendental functions , Vol. III, McGraw-Hill, New York, 1954. · Zbl 0056.28104
[15] G. Gripenberg, S.-O. Londen and O. Staffans, Volterra integral and functional equations , Cambridge Univ. Press, Cambridge, 1990. · Zbl 0695.45002
[16] A.A. Kilbas, B. Bonilla and J.J. Trujillo, Existence and uniqueness theorems for nonlinear fractional differential equations , Demonstratio Math. 33 (2000), 583-602. · Zbl 0964.34004
[17] A.A. Kilbas, M. Saigo and R.K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators , Integral Transform. Spec. Funct., · Zbl 1047.33011
[18] M.L. Krasnov, A.I. Kiselev and G.I. Makarenko, Integral equations , Nauka, Moscow, 1976. (Russian) · Zbl 0217.15601
[19] G.L. Ortiz, The tau method , SIAM J. Numer. Anal. 6 (1969), 480-492. JSTOR: · Zbl 0195.45701
[20] T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel , Yokohama Math. J. 19 (1971), 7-15. · Zbl 0221.45003
[21] L.B. Rall, Computational solution of nonlinear operator equations , John Wiley and Sons, New York, 1969. · Zbl 0175.15804
[22] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional integrals and derivatives , Theory and applications , Gordon and Breach, Yverdon and New York, 1993. · Zbl 0818.26003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.