×

zbMATH — the first resource for mathematics

Stability preserving integration of index-2 DAEs. (English) Zbl 1041.65066
The paper is a continuation of the article [ibid. 45, No. 2–3, 175–200 (2003; Zbl reviewed above)] by the same authors, published in the same volume. Again, possibly after reformulation, differential-algebraic formula method with properly stated leading term which are numerically qualified are studied under the aspect of preservation of contractivity or dissipativity properties by numerical approximation schemes.

MSC:
65L80 Numerical methods for differential-algebraic equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
34A09 Implicit ordinary differential equations, differential-algebraic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ascher, U.; Petzold, L.R., Stability of computational methods for constrained dynamic systems, SIAM J. sci. comput., 14, 95-120, (1993) · Zbl 0773.65044
[2] Balla, K.; März, R., A unified approach to linear differential algebraic equations and their adjoints, Z. anal. anwendungen, 21, 783-802, (2002) · Zbl 1024.34002
[3] Brenan, K.E.; Campbell, S.L.; Petzold, L.R., Numerical solution of initial value problems in differential algebraic equations, (1989), North-Holland Amsterdam · Zbl 0699.65057
[4] Eich-Soellner, E.; Führer, C., Numerical methods in multibody dynamics, (1998), Teubner Stuttgart · Zbl 0899.70001
[5] Estévez Schwarz, D.; Tischendorf, C., Structural analysis of electric circuits and consequences for MNA, Internat. J. circ. theor. appl., 28, 131-162, (2000) · Zbl 1054.94529
[6] Garcia-Celayeta, B.; Higueras, I., Runge–kutta methods for DAEs—A new approach, J. comput. appl. math., 111, 1–2, 49-61, (1999) · Zbl 0948.65081
[7] Gear, C.W.; Petzold, L.R., ODE methods for the solution of differential/algebraic systems, SIAM J. numer. anal., 21, 716-728, (1984) · Zbl 0557.65053
[8] M. Günther, P. Rentrop, Numerical simulation of electrical circuits, Preprint 01/01, University of Karlsruhe, IWRMM, 2001
[9] Griepentrog, E.; März, R., Differential-algebraic equations and their numerical treatment, (1986), Teubner Leipzig · Zbl 0629.65080
[10] Hanke, M.; Izquierdo Macana, E.; März, R., On asymptotics in case of linear index-2 differential–algebraic equations, SIAM J. numer. anal., 35, 1326-1346, (1998) · Zbl 0946.65067
[11] I. Higueras, R. März, Differential algebraic equations with properly stated leading term, Preprint 2000-20, Humboldt Univ. of Berlin, Institute of Mathematics, 2002, Comp. Math. Appl., to appear · Zbl 1068.34005
[12] I. Higueras, R. März, C. Tischendorf, Stability preserving integration of index-1 DAEs, Appl. Numer. Math., in press · Zbl 1041.65065
[13] März, R., Index-2 differential–algebraic equations, Results in math., 15, 148-171, (1989) · Zbl 0667.34014
[14] März, R., Differential algebraic systems anew, Appl. numer. math., 42, 315-335, (2002) · Zbl 1005.65080
[15] März, R.; Rodriguez Santiesteban, A.R., Analyzing the stability behaviour of solutions and their approximations in case of index-2 differential–algebraic systems, Math. comput., 71, 605-632, (2001) · Zbl 1002.65091
[16] Stuart, A.M.; Humphries, A.R., Dynamical systems and numerical analysis, (1998), Cambridge University Press Cambridge · Zbl 0913.65068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.