×

Two-sample hypothesis tests of means of a fuzzy random variable. (English) Zbl 1042.62012

Summary: We consider some two-sample hypothesis tests for means concerning a fuzzy random variable in two populations. For this purpose, we make use of a generalized metric for fuzzy numbers, and we develop an exact study for the case of normal fuzzy random variables and an asymptotic study for the case of simple general fuzzy random variables.

MSC:

62F05 Asymptotic properties of parametric tests
62F03 Parametric hypothesis testing
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Puri, M.L.; Ralescu, D.A., Fuzzy random variables, J. math. anal. appl., 114, 409-422, (1986) · Zbl 0592.60004
[2] Puri, M.L.; Ralescu, D.A., The concept of normality for fuzzy random variables, Ann. probab., 13, 1373-1379, (1985) · Zbl 0583.60011
[3] Aumann, R.J., Integrals of set-valued functions, J. math. anal. appl., 12, 1-12, (1965) · Zbl 0163.06301
[4] Zadeh, L.A., The concept of a linguistic variable and its application to approximate reasoning, part 1, Inform. sci., 8, 199-249, (1975) · Zbl 0397.68071
[5] Zadeh, L.A., The concept of a linguistic variable and its application to approximate reasoning, part 2, Inform. sci., 8, 301-353, (1975) · Zbl 0404.68074
[6] Zadeh, L.A., The concept of a linguistic variable and its application to approximate reasoning, part 3, Inform. sci., 9, 43-80, (1975) · Zbl 0404.68075
[7] Diamond, P.; Kloeden, P., Metric spaces of fuzzy sets: theory and applications, (1994), World Scientific Singapore · Zbl 0873.54019
[8] M. Montenegro, M.R. Casals, M.A. Gil, Estimating fuzzy parameters of fuzzy random variables in a Bayesian context, in: Proceedings of the Seventh IPMU Conference, vol. 2, 1998, pp. 1002-1007
[9] M.A. Lubiano Gómez, Medidas de variación para elementos aleatorios imprecisos, Ph.D. Thesis, Universidad de Oviedo, 1999
[10] Lubiano, M.A.; Gil, M.A., Estimating the expected value of fuzzy random variables in random samplings from finite populations, Stat. pap., 40, 277-295, (1999) · Zbl 0942.62010
[11] Bertoluzza, C.; Corral, N.; Salas, A., On a new class of distances between fuzzy numbers, Mathware & soft computing, 2, 71-84, (1995) · Zbl 0887.04003
[12] R. Körner, W. Näther, On the variance of random fuzzy variables, in: C. Bertoluzza, M.A. Gil, D.A. Ralescu (Eds.), Statistical Modeling, Analysis and Management of Fuzzy Data, Physica-Verlag (in press, 2001) pp. 22-39
[13] Pardo, L.; Zografos, K., Goodness of fit tests with missclassified data based on φ-divergences, Biom. J., 42, 223-237, (2000) · Zbl 0967.62001
[14] A. Colubi Cervero, Leyes fuertes de los grandes números para variables aleatorias difusas, Ph.D. Thesis, Universidad de Oviedo, 2000
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.