×

zbMATH — the first resource for mathematics

An alternative way to compute Fourier amplitude sensitivity test (FAST). (English) Zbl 1042.65506
Summary: In this article we investigate the relationship between two coefficients used in sensitivity analysis of model output. One is the Fourier amplitude sensitivity test’s coefficient, developed in the 1970s, and the other the Sobol’ sensitivity indices, developed in the 1990s. Supposedly both methods are capable of computing the “main effect” contribution of model’s input parameters to model’s output variance. We discuss the equivalence of the two methods, and prove the identity of their prediction on two test cases. Relative advantage and disadvantages of the methods are also illustrated.

MSC:
65C20 Probabilistic models, generic numerical methods in probability and statistics
65C99 Probabilistic methods, stochastic differential equations
65T50 Numerical methods for discrete and fast Fourier transforms
Software:
TOMS659
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Archer, G.; Saltelli, A.; Sobol’, I. M.: Sensitivity measures, ANOVA like techniques and the use of bootstrap. J. statist. Comput. simulation (1997) · Zbl 1102.62335
[2] Bolado, R.; Moya, J. A.; Alonso, A.: Mayday. A code to perform uncertainty and sensitivity analysis. An application to 129 iodine in PSACOIN level E exercise. Proc. SAMO (1995)
[3] Box, G. E. P.; Hunter, W. G.; Hunter, J. S.: Statistics for experimenters. (1978) · Zbl 0394.62003
[4] Bratley, P.; Fox, B. L.: Algorithm 659. Implementing sobol’s quasirandom sequence generator. ACM trans. Math. software 14, 88-100 (1988) · Zbl 0642.65003
[5] Cotter, S. C.: A screening design for factorial experiments with interactions. Biometrika 66, No. 2, 317-320 (1979)
[6] Cox, D. C.: An analytical method for uncertainty analysis of nonlinear output functions, with applications to fault-free analysis. IEEE trans. Reliability 31, No. 5, 465-468 (1982) · Zbl 0502.90038
[7] Cukier, R. I.; Fortuin, C. M.; Shuler, K. E.; Petschek, A. G.; Schaibly, J. K.: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I theory. J. chem. Phys. 59, No. 8, 3873-3878 (1973)
[8] Cukier, R. I.; Levine, H. B.; Schuler, K. E.: Nonlinear sensitivity analysis of multiparameter model systems. J. comput. Phys. 26, 1-42 (1978) · Zbl 0369.65023
[9] Cukier, R. I.; Schaibly, J. H.; Shuler, K. E.: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. analysis of the approximations. J. chem. Phys. 63, No. 3 (1975)
[10] Davis, P. J.; Rabinowitz, P.: Methods of numerical integratior. (1984) · Zbl 0537.65020
[11] Draper, N. R.; Smith, H.: Applied regression analysis. (1981) · Zbl 0548.62046
[12] Efron, B.; Stein, C.: The jacknife estimate of variance. Ann statist. 9, 586-596 (1981) · Zbl 0481.62035
[13] Helton, J. C.: Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal. Rel. eng. System safety 42, 327-367 (1993)
[14] Iman, R. L.; Hora, S. C.: A robust measure of uncertainty importance for use in fault tree system analysis. Risk anal. 10, No. 3, 401-406 (1990)
[15] Koda, M.; Mcrae, G. J.; Seinfeld, J. H.: Automatic sensitivity analysis of kinetic mechanisms. Int. J. Chem. kinetics 11, 427-444 (1979)
[16] Krzykacz, B.: Samos: a computer program for the derivation of empirical sensitivity measures of results from large computer models. Technical report GRS-A-1700 (1990)
[17] Liepman, D.; Stephanopoulos, G.: Development and global sensitivity analysis of a closed ecosystem model. Ecological modelling 30, 13-47 (1985)
[18] Mckay, M. D.: Evaluating prediction uncertainty. Los alamos national laboratories report NUREG/CR-6311, LA-12915-MS (1995)
[19] Mcrae, G. J.; Tilden, J. W.; Seinfeld, J. H.: Global sensitivity analysis – a computational implementation of the Fourier amplitude sensitivity test (FAST). Comput. chem. Eng. 6, 15-25 (1982)
[20] Group, Oecd/nea Psac User: PSACOIN level E intercomparison, an international code intercomparison exercise on a hypothetical safety assessment case study for radioactive waste disposal systems. (1989)
[21] Robinson, P. C.; Hodgkinson, D. P.: Exact solutions for radionuclide transport in the presence of parameter uncertainty. Radioactive waste management nucl. Fuel cycle, No. 8 (1987)
[22] Sacks, J.; Welch, W. J.; Mitchell, T. J.; Wynn, H. P.: Design and analysis of computer experiments. Statist. sci. 4, No. 4, 435 (1989) · Zbl 0955.62619
[23] Saltelli, A.; Andres, T. H.; Homma, T.: Sensitivity analysis of model output; an investigation of new techniques. Comput. statist. Data anal. 15, 211-238 (1993) · Zbl 0875.62200
[24] Saltelli, A., Hjorth, J., Uncertainty and sensitivity analyses of dimethylsulphide OH-initiated oxidation kinetics, J. Atmos. Chem., to appear.
[25] Saltelli, A.; Homma, T.: Sensitivity analysis for model output; performance of black box techniques on three international benchmark exercises. Comput. statist. Data anal. 13, No. 1, 73-94 (1992)
[26] Saltelli, A.; Sobol’, I. M.: About the use of rank transformation in sensitivity analysis of model output. Reliability eng. Syst. safety 50, 225-239 (1995) · Zbl 0974.00507
[27] Saltelli, A.; Sobol’, I. M.: Sensitivity analysis for nonlinear mathematical models: numerical experience. Matematicheskoye modelirovaniye 7, No. 11, 16-28 (1995) · Zbl 0974.00507
[28] Saltelli, A.; Von Maravić, H.: SAMO 95, proc. Symp. on theory and applications of sensitivity analysis of model output in computer simulation (SAMO). Belgirate (1996)
[29] Schaibly, J. K.; Shuler, K. E.: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. Part II, applications. J. chem. Phys. 59, No. 8, 3879-3888 (1973)
[30] Sobol’, I. M.: On the distribution of points in a cube and the approximate evaluation of integrals. USSR comput. Math. math. Phys. 7, No. 4, 86-112 (1967) · Zbl 0185.41103
[31] Sobol’, I. M.: Multidimensional quadrature formulas and Haar functions. (1969) · Zbl 0195.16903
[32] Sobol’, I. M.: Uniformly distributed sequences with an additional uniform property. USSR comput. Math. math. Phys. 16, No. 5, 236-242 (1976) · Zbl 0391.10033
[33] Sobol’, I. M.: Mathematical modelling and comput. Exp.. 1, No. 4, 407-414 (1993) · Zbl 1039.65505
[34] Sobol’, I. M.: Quasi-Monte Carlo methods. Progr. nucl. Energy 24, 55-61 (1990)
[35] Sobol’, I. M.; Turchaninov, V. I.; Levitan, Yu.L.; Shukhman, B. V.: Quasi random sequence generators. (1992)
[36] Turany, T.: Sensitivity analysis of complex kinetic systems. Tools andapplications. J math. Chemistry 5, 203-248 (1990)
[37] Weyl, H.: Mean motion. Am. J. Math. 60, 889-896 (1938) · Zbl 0019.33404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.