×

zbMATH — the first resource for mathematics

Reliable solution of an elasto-plastic Reissner-Mindlin beam for Hencky’s model with uncertain yield function. (English) Zbl 1042.74533
Summary: We apply the method of reliable solutions to the bending problem for an elasto-plastic beam, considering the yield function of von Mises type with uncertain coefficients. The compatibility method is used to find the moments and shear forces. Then we solve a maximization problem for these quantities with respect to the uncertain input data.

MSC:
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74P10 Optimization of other properties in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam, 1976. · Zbl 0322.90046
[2] Hlaváček, I.: Reliable solutions of elliptic boundary problems with respect to uncertain data. Proceedings of the WCNA-96. Nonlinear Analysis, Theory, Methods & Applications 30 (1997), 3879-3890. · Zbl 0896.35034 · doi:10.1016/S0362-546X(96)00236-2
[3] Hlaváček, I.: Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients. J. Math. Appl. 212 (1997), 452-466. · Zbl 0919.35047 · doi:10.1006/jmaa.1997.5518
[4] Hlaváček, I.: Reliable solutions of problems in the deformation theory of plasticity with respect to uncertain material function. Appl. Math. 41 (1996), 447-466. · Zbl 0870.65095 · eudml:32961
[5] Hlaváček, I.: Reliable solution of an elasto-plastic torsion problem. · Zbl 1016.74008 · doi:10.1002/mma.261
[6] Hlaváček, I.: Reliable solution of a Signorini contact problem with friction, considering uncertain data. · Zbl 1016.74051 · doi:10.1002/(SICI)1099-1506(199909)6:6<411::AID-NLA178>3.0.CO;2-W
[7] Hlaváček, I., Lovíšek, J.: Optimal design of an elastic or elasto-plastic beam with unilateral elastic foundation and rigid supports. Z. Angew. Math. Mech. 72 (1992), 29-43. · Zbl 0778.73042 · doi:10.1002/zamm.19920720104
[8] Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Elsevier, Amsterdam, 1981.
[9] Lagnese, J. E., Lions, J.-L.: Modelling Analysis and Control of Thin Plates. Masson, Paris and Springer-Verlag, Berlin, 1989. · Zbl 0662.73039
[10] Neal, B. G.: Structural Theorems and Their Applications. Pergamon Press, Oxford, 1964. · Zbl 0142.23603
[11] Rakowski, J.: The interpretation of the shear locking in beam elements. Comput. & Structures 37 (1990), 769-776. · doi:10.1016/0045-7949(90)90106-C
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.