×

zbMATH — the first resource for mathematics

Bridge the gap between the Lorenz system and the Chen system. (English) Zbl 1043.37026

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
34C28 Complex behavior and chaotic systems of ordinary differential equations
37N05 Dynamical systems in classical and celestial mechanics
70Q05 Control of mechanical systems
93B52 Feedback control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1142/S0218127402005467 · Zbl 1043.37023 · doi:10.1142/S0218127402005467
[2] DOI: 10.1142/3033 · doi:10.1142/3033
[3] DOI: 10.1142/S0218127499001024 · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[4] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[5] DOI: 10.1142/S0218127402004620 · Zbl 1063.34510 · doi:10.1142/S0218127402004620
[6] DOI: 10.1142/S0218127402004851 · Zbl 1044.37021 · doi:10.1142/S0218127402004851
[7] DOI: 10.1142/S0218127402004735 · Zbl 1044.37022 · doi:10.1142/S0218127402004735
[8] DOI: 10.1016/S0960-0779(02)00007-3 · Zbl 1067.37042 · doi:10.1016/S0960-0779(02)00007-3
[9] Lü J., Chaotic Time Series Analysis and Its Applications (2002)
[10] DOI: 10.1038/35023206 · doi:10.1038/35023206
[11] Ueta T., Int. J. Bifurcation and Chaos 10 pp 1917–
[12] Vanĕcek A., Control Systems: From Linear Analysis to Synthesis of Chaos (1996)
[13] Wang X., Int. J. Bifurcation and Chaos 10 pp 549–
[14] Xue Y., Quantitative Study of General Motion Stability and an Example on Power System Stability (1999)
[15] Yu Y., Chaos Solit. Fract. 15 pp 897–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.