The order dimension of the poset of regions in a hyperplane arrangement. (English) Zbl 1044.52010

The order dimension of a finite poset \(P\) is the smallest \(n\) so that \(P\) can be embedded as an induced subposet of the componentwise order on \(\mathbb{R}^n\). In this paper, the author shows that the order dimension of the weak order on a Coxeter group of type \({\mathbf A}\), \({\mathbf B}\) or \({\mathbf C}\) (that is, the order dimension of the poset of regions of the corresponding Coxeter arrangement) is equal to the rank of the Coxeter group. The case for \({\mathbf A}_n\) was proven previously in [S. Flath, Order 10, No. 3, 201–219 (1993; Zbl 0795.06004)] (see also J. L. Ramírez Alfonsín and D. Romero, Discrete Math. 254, 473–483 (2002; Zbl 1027.05029) where explicit embeddings are given).


52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
Full Text: DOI arXiv Link


[1] Barcelo, H.; Ihrig, E., Modular elements in the lattice L(A) when A is a real reflection arrangement, selected papers in honor of adriano garsia, Discrete math., 193, 1-3, 61-68, (1998) · Zbl 1061.05512
[2] Björner, A.; Edelman, P.; Ziegler, G., Hyperplane arrangements with a lattice of regions, Discrete comput. geom., 5, 263-288, (1990) · Zbl 0698.51010
[3] N. Bourbaki, Éléments de mathématique. Groupes et algèbres de Lie. Chapitres 4, 5 et 6, Masson, Paris, 1981. · Zbl 0483.22001
[4] N. Caspard, C. Le Conte de Poly-Barbut, M. Morvan, Cayley lattices of finite Coxeter groups are bounded, preprint, 2001. · Zbl 1097.06001
[5] Dushnik, B.; Miller, E., Partially ordered sets, Amer. J. math., 63, 600-610, (1941) · JFM 67.0157.01
[6] Edelman, P., A partial order on the regions of \(R\^{}\{n\}\) dissected by hyperplanes, Trans. amer. math. soc., 283, 2, 617-631, (1984) · Zbl 0555.06003
[7] Felsner, S.; Trotter, W., Dimension, graph and hypergraph coloring, Order, 17, 2, 167-177, (2000) · Zbl 0968.06002
[8] Flath, S., The order dimension of multinomial lattices, Order, 10, 3, 201-219, (1993) · Zbl 0795.06004
[9] Z. Füredi, P. Hajnal, V. Rödl, W. Trotter, Interval orders and shift graphs, in: Sets, Graphs and Numbers, Budapest, 1991, pp. 297-313, Colloq. Math. Soc. János Bolyai 60 (1992), North Holland, Amsterdam.
[10] J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, Vol. 29, Cambridge University Press, Cambridge, 1990. · Zbl 0725.20028
[11] P. Orlik, H. Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, Vol. 300, Springer, Berlin, 1992. · Zbl 0757.55001
[12] Rabinovitch, I.; Rival, I., The rank of a distributive lattice, Discrete math., 25, 3, 275-279, (1979) · Zbl 0421.06012
[13] N. Reading, Lattice and order properties of the poset of regions in a hyperplane arrangement, Algebra Universalis, in press. · Zbl 1092.06006
[14] W. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory, Johns Hopkins Series in the Mathematical Sciences, The Johns Hopkins University Press, Baltimore, MD, 1992. · Zbl 0764.05001
[15] Yannakakis, M., The complexity of the partial order dimension problem, SIAM J. algebraic discrete methods, 3, 3, 351-358, (1982) · Zbl 0516.06001
[16] Ziegler, G., Combinatorial construction of logarithmic differential forms, Adv. math., 76, 1, 116-154, (1989) · Zbl 0725.05032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.