zbMATH — the first resource for mathematics

Optimality of neighbor-balanced designs for total effects. (English) Zbl 1045.62074
Summary: The purpose of this paper is to study optimality of circular neighbor-balanced block designs when neighbor effects are present in the model. In the literature many optimality results are established for direct effects and neighbor effects separately, but few for total effects, that is, the sum of direct effects of treatments and relevant neighbor effects. We show that circular neighbor-balanced designs are universally optimal for total effects among designs with no self neighbor. Then we give efficiency factors of these designs, and show some situations where a design with self neighbors is preferable to a neighbor-balanced design.

62K05 Optimal statistical designs
62K10 Statistical block designs
Full Text: DOI arXiv
[1] Azaïs, J.-M., Bailey, R. A. and Monod, H. (1993). A catalogue of efficient neighbour-designs with border plots. Biometrics 49 1252–1261.
[2] Besag, J. and Kempton, R. A. (1986). Statistical analysis of field experiments using neighbouring plots. Biometrics 42 231–251. · Zbl 0658.62129 · doi:10.2307/2531047
[3] Cheng, C.-S. and Wu, C. F. (1980). Balanced repeated measurements designs. Ann. Statist. 8 1272–1283. [Correction (1983) 11 349.] JSTOR: · Zbl 0461.62064 · links.jstor.org
[4] Druilhet, P. (1999). Optimality of neighbour balanced designs. J. Statist. Plann. Inference 81 141–152. · Zbl 0939.62076 · doi:10.1016/S0378-3758(99)00004-X
[5] Hedayat, A. and Afsarinejad, K. (1978). Repeated measurements designs. II. Ann. Statist. 6 619–628. JSTOR: · Zbl 0395.62056 · doi:10.1214/aos/1176344206 · links.jstor.org
[6] Kempton, R. A. (1982). Adjustment for competition between varieties in plant breeding trials. J. Agricultural Sci. 98 599–611.
[7] Kempton, R. A. (1985). Spatial methods in field experiments. Biometric Bulletin 2 (3) 4–5.
[8] Kempton, R. A. (1991). Interference in agricultural experiments. In Proc. Second Meeting of the Biometric Society East/Central/Southern African Network . Harare, Zimbabwe.
[9] Kempton, R. A. (1997). Interference between plots. In Statistical Methods for Plant Variety Evaluation (R. A. Kempton and P. N. Fox, eds.) 101–116. Chapman and Hall, London.
[10] Kiefer, J. (1975). Construction and optimality of generalized Youden designs. In A Survey of Statistical Design and Linear Models (J. N. Srivastava, ed.) 333–353. North-Holland, Amsterdam. · Zbl 0313.62057
[11] Kunert, J. (1983). Optimal design and refinement of the linear model with applications to repeated measurements designs. Ann. Statist. 11 247–257. JSTOR: · Zbl 0522.62054 · doi:10.1214/aos/1176346075 · links.jstor.org
[12] Kunert, J. (1984a). Designs balanced for circular residual effects. Comm. Statist. A—Theory Methods 13 2665–2671. · Zbl 0565.62048 · doi:10.1080/03610928408828850
[13] Kunert, J. (1984b). Optimality of balanced uniform repeated measurements designs. Ann. Statist. 12 1006–1017. JSTOR: · Zbl 0544.62068 · doi:10.1214/aos/1176346717 · links.jstor.org
[14] Kunert, J. and Martin, R. J. (2000). On the determination of optimal designs for an interference model. Ann. Statist. 28 1728–1742. · Zbl 1103.62358 · doi:10.1214/aos/1015957478 · euclid:aos/1015957478
[15] Kushner, H. B. (1997). Optimal repeated measurements designs: The linear optimality equations. Ann. Statist. 25 2328–2344. · Zbl 0894.62088 · doi:10.1214/aos/1030741075
[16] Langton, S. (1990). Avoiding edge effects in agroforestry experiments: The use of neighbour-balanced designs and guard areas. Agroforestry Systems 12 173–185.
[17] Magda, C. G. (1980). Circular balanced repeated measurements designs. Comm. Statist. A—Theory Methods 9 1901–1918. · Zbl 0457.62061 · doi:10.1080/03610928008828004
[18] Matthews, J. N. S. (1988). Recent developments in crossover designs. Internat. Statist. Rev. 56 117–127. · Zbl 0646.62065 · doi:10.2307/1403636
[19] McGilchrist, C. A. (1965). Analysis of competition experiments. Biometrics 21 975–985.
[20] McGilchrist, C. A. and Trenbath, B. R. (1971). A revised analysis of competition experiments. Biometrics 27 659–671.
[21] Patterson, H. D. (1950). The analysis of change-over trials. J. Agricultural Sci. 40 375–380.
[22] Patterson, H. D. (1951). Change-over trials (with discussion). J. Roy. Statist. Soc. Ser. B 13 256–271. · Zbl 0045.22903
[23] Pukelsheim, F. (1993). Optimal Design of Experiments . Wiley, New York. · Zbl 0834.62068
[24] Shah, K. R. and Sinha, B. K. (1989). Theory of Optimal Designs . Lecture Notes in Statist. 54 . Springer, New York. · Zbl 0688.62043
[25] Speckel, D., Vincourt, P., Azaï s, J.-M. and Kobilinsky, A. (1987). Etude de la compétition interparcellaire chez le tournesol. Biom. Praxim. 27 21–43.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.