×

zbMATH — the first resource for mathematics

The generalized Libera transform on Hardy, Bergman and Bloch spaces on the unit polydisc. (English) Zbl 1046.47026
Let \(U^1= U\) be the unit disk in the complex plane \(\mathbb C\), \(dm(z)= {1\over \pi} \,dr\,d\theta\) the normalized Lebesgue measure on \(U\), \(U^n\) the unit polydisk in the complex vector space \(\mathbb C^n\) and let \(H(U^n)\) be the space of all analytic functions on \(U^n\).
For \(z^0\in \overline U^n\) fixed and \(f\in H(U^n)\), the linear operator \(f\to \Lambda_{z^0}(f)\) defined by \[ \Lambda_{z^0} f(z)= {1\over \prod^n_{j=1} (z_j- z^0_j)} \int^{z_1}_{z^0_1}\cdots \int^{z_n}_{z^0_n} f(t)\,dt\quad (z\in U^n) \] is called the generalized libera transform.
In this paper, the author investigates the boundedness of the generalized libera transform on Hardy, Bergman and \(a\)-Bloch spaces of analytic functions on \(U^n\).

MSC:
47B38 Linear operators on function spaces (general)
46E20 Hilbert spaces of continuous, differentiable or analytic functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aleman, A. and A. Siskakis: Integration operators on Bergman spaces. Indiana Univ. Math. J. 46 (1997), 337 - 356. · Zbl 0951.47039 · doi:10.1512/iumj.1997.46.1373
[2] Andersen, K. F.: Ces‘aro averaging operators on Hardy spaces. Proc. Royal Soc. Edinburgh 126A (1996), 617 - 624. · Zbl 0865.47020 · doi:10.1017/S0308210500022939
[3] Benke, G. and D. C. Chang: A note on weighted Bergman spaces and the Ces‘aro operator. Nagoya Math. J. 159 (2000), 25 - 43. · Zbl 0981.32001
[4] Chang, D. C. and S. Stević: The generalized Ces‘aro operator on the unit poly- disk. Taiwanese J. Math. 7 (2) (2003) (to appear). · Zbl 1065.47033
[5] Danikas, N., Ruscheweyh, S. and A. Siskakis: Metrical and topological properties of a generalized Libera transform. Arch. Math. 63 (1994), 517 - 524. · Zbl 0812.30013 · doi:10.1007/BF01202067
[6] Duren, P.: Theory of Hp spaces. New York: Acad. Press 1970. S. Stević · Zbl 0215.20203
[7] Galanopoulos, P.: The Ces‘aro operator on Dirichlet spaces. Acta Sci. Math. 67 (2001), 411 - 420. · Zbl 0980.47033
[8] Libera, R. J.: Some classes of regular univalent functions. Proc. Amer. Math. Soc. 16 (1965), 755 - 758. · Zbl 0158.07702 · doi:10.2307/2033917
[9] Ryff, J. V.: Subordinate Hp functions. Duke Math. J. 33 (1966), 347 - 354. · Zbl 0148.30205 · doi:10.1215/S0012-7094-66-03340-0
[10] Siskakis, A.: Composition semigroups and the Ces‘aro operator on Hp(D). J. London Math. Soc. 36 (1987), 153 - 164. · Zbl 0634.47038 · doi:10.1112/jlms/s2-36.1.153
[11] Siskakis, A.: Semigroups of composition operators in Bergman spaces. Bull. Austral. Math. Soc. 35 (1987), 397 - 406. · Zbl 0611.47033 · doi:10.1017/S0004972700013381
[12] Stempak, K.: Ces‘aro averaging operators. Proc. Royal Soc. Edinburgh 124A (1994), 121 - 126. · Zbl 0806.47027 · doi:10.1017/S030821050002922X
[13] Stević, S.: Ces‘ aro averaging operators. Math. Nachr. 248 - 249 (2003), 1 - 5. · Zbl 1024.47014 · doi:10.1002/mana.200310013
[14] Stević, S.: A note on the generalized Ces‘aro operator on Bergman spaces. In- dian J. Math. (to appear). · Zbl 1088.47025
[15] Zygmund, A.: Trigonometric Series, Vol. II. Cambridge Univ. Press 1959. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.